Скачать fb2
Юный техник, 2001 № 05

Юный техник, 2001 № 05

Аннотация

    Популярный детский и юношеский журнал.


ЖУРНАЛ «ЮНЫЙ ТЕХНИК» НАУКА ТЕХНИКА ФАНТАСТИКА САМОДЕЛКИ № 5 май 2001

    Популярный детский и юношеский журнал.
    Выходит один раз в месяц.
    Издается с сентября 1956 года.

ФОТОФАКТ

    Фото Ю.ЕГОРОВА

    Велосипед хоть и консервативная конструкция, а эволюционирует непрерывно. Свою лепту в этот процесс внес и одессит В. Кадыров, решив задачу трансформации машины. Чтобы сложить велосипед, например, перед входом в метро, требуется одно движение: поднять за руль — и заднее колесо подъедет к переднему, встав на защелку. А чтобы уместить велосипед в «дипломате». Кадыров решил несколько головоломок.
    Попробуйте разгадать каких.


    Такую вот конструкцию изобрел и уже испытал московский инженер Л. Гурфинский. Вариантов же может быть несчетно. Пробуйте!



    Парить над землей практически на любой высоте — огромное удовольствие. А всего-то и требуется — усовершенствовать монгольфьер. Что и сделал англичанин Дон Камерон. Шары его конструкции просты и удобны, легко наполняются горячим воздухом, который дают мощные газовые горелки.


    А эту необычную водоплавающую машину смастерил магнитогорский инженер А.Бакишиов. Она бегает по воде, опираясь на вращающиеся с большой скоростью винты, установленные под определенным углом. Словом, механический жук-водомерка, что передвигается по поверхности воды, вибрируя гидрофобными лапками. Этих словно скользящих по глади скоростников можно наблюдать в тихих заводях и на прудах.


    «Живая» и «мертвая» вода — сказка это или реальное техническое достижение, до конца неясно. Но уже выпускаются бытовые установки для ее получения. Называются они «ЭСПЕРО».

ГОРИЗОНТЫ НАУКИ И ТЕХНИКИ
Так есть ли предел силам человеческим?

    «Быстрее, выше, сильнее!» — лозунг спортивных Олимпиад. Но казалось бы, куда уж быстрее и выше, когда напряжение человеческих сил уже на пределе. Однако проходят очередные соревнования — и вот вам новый рекорд. Только теперь это не просто достижения спортсменов. Разделить с ними успех по праву могут ученые, инженеры, спортивные специалисты. Соревнования в Сиднее стали своеобразным полигоном для испытания последних научно-технических достижений в спорте.


«Быстрая кожа»

    Взглянув на старые фотографии, нетрудно заметить разительные перемены во внешнем облике спортсменов, что произошли за последние полвека. И прежде всего в экипировке.
    На смену мешковатым шерстяным костюмам, просторным трусам и майкам пришла аэродинамическая амуниция. Вспомните, какое ошеломляющее впечатление на зрителей и судей произвели в Сиднее пловцы, от шеи до пят затянутые в комбинезоны из черной блестящей ткани, прозванной «акульей кожей»! Они и впрямь напоминали в воде сильных морских хищников, способных атаковать почти молниеносно.
    Для сравнения: на соревнованиях по плаванию в олимпийской Атланте-96 было установлено 4 мировых рекорда. На Играх в Сиднее-2000 — 15! И все без исключения рекордсмены были облачены в комбинезоны из «акульей кожи».
    Феноменальный австралиец Иан Торп — в специально разработанный для него фирмой Adidas. Остальные — в костюмах американской фирмы Speedo.
    А вот сама идея их разработки принадлежала нашему спортивному специалисту Геннадию Турецкому, тренеру четырехкратного олимпийского чемпиона Александра Попова. Это он подметил, что акулы и дельфины плывут, практически не оставляя за собой бурунов. По его мнению, завихрения, естественные при движении, но создающие ненужное гидродинамическое сопротивление у морских животных, гасит структура кожи. Базируясь на этой мысли и разрабатывались специальные комбинезоны под названием «Fast skin» — «быстрая кожа».
    При детальном рассмотрении обтекания тела спортсмена водой оказалось, что против завихрений можно бороться с помощью тех же завихрений. Вот и был «выткан» костюм, части которого отличались от соседних жесткостью и направлением ворсинок ткани. Вместе они создают крошечные бурунчики — турбулентность, говоря языком специалистов по гидродинамике.
    На поверхности возникает своеобразная вихревая оболочка, которая и снижает сопротивление.
    По ходу экспериментов выяснилось, что трение о воду уменьшается в среднем на 3 %. Казалось бы, немного. Однако стоит учитывать еще и психологический эффект. Спортсмены признавались, что в таких костюмах им казалось, у них словно выросли плавники. Все это вместе повысило показатели в среднем на 7 — 10 %. Они-то и принесли новые мировые рекорды.


    «Акулья кожа» помогает устанавливать рекорды.

Рассекая воздух

    В немалой степени новая техника помогла увеличить скорость велосипедистов. И если на прошлых Олимпиадах инженеры в основном обращали внимание на сами машины, то теперь взялись за амуницию седоков.
    Дело в том, что последние исследования показали: велосипеды из углеродных пластиков с дисковыми колесами на специальных подшипниках позволили выжать из машины все. Вот некоторые данные: 90 % сопротивления приходится теперь на аэродинамику и лишь 10 % — на сопротивление механическое — от трения качения шин о дорогу, в подшипниках.
    И велосипедисты не только надели обтягивающие аэродинамические костюмы, но изменили и технику посадки — теперь многие держатся руками за специальные «рога» посередине руля. И руки вместе с наклоненной головой становятся своеобразным рассекателем воздуха. На головах к тому же появились обтекаемые шлемы и очки. Зеркальная поверхность каски отражает солнечные лучи, а причудливая обтекаемая форма направляет, как бы придавливает встречный поток воздуха к спине гонщика и тем самым как бы подталкивает его в спину! А соединенные со шлемом громадные линзы позволяют смотреть вперед, не поднимая головы.
    Даже туфли у многих гонщиков специальной формы — с острыми закругленными носками; опять-таки для лучшего рассекания воздуха. Все, вместе взятое, это позволяет экономить до 10 % усилий спортсмена. А значит, увеличивает и скорость.


    Велосипедист в своей каске похож на инопланетянина.

Кроссовки с компьютером

    У легкоатлетов тоже появилась своя «быстрая кожа». Их форма имеет специальный крой и сшита из таких полимерных материалов, которые упруго обтягивают мышцы, как бы усиливая их работу. Ткань отводит избыточное тепло, позволяя телу не расходовать лишнюю энергию на потоотделение. Она же гасит ненужную вибрацию.
    Еще одна интересная деталь. На последней Олимпиаде все обратили внимание на одежду австралийских марафонцев. И оказалось, что их сетчатые полупрозрачные маечки изготовлены из переработанных пластиковых бутылок. Сырье-то бросовое, но из него удалось создать материал, который прекрасно «дышит», охлаждая тело.
    А над оптимальной обувью для бегунов работали специальные научные центры. И специалисты, кстати, выяснили, что лучше всего бегать… босиком. При этом отдача мышц стопы будет наибольшей.
    Только вот беда: бегать при этом надо не по асфальту, гаревой и даже тартановой дорожке, а по земле, покрытой травкой. А поскольку таких условий на стадионах и марафонских трассах нет, то приходится приспосабливаться.
    Бегун-стайер, привыкший одолевать дистанции во многие тысячи метров, сегодня ни за что не наденет шиповки. Потому как техника бега у него в отличие от спрингера совсем другая.
    Большинство бегунов на длинные дистанции при беге наступает на пятки, в то время как спринтеры бегут практически на носках. При этом, как установили сотрудники фирмы Nike, максимальная сила, действующая на стопу во время контакта с дорожкой, может втрое превышать вес бегуна. А ускорение, сообщаемое ноге, вдесятеро превосходит нормальное ускорение силы тяжести.
    При таких нагрузках обувь сама по себе должна быть исключительно прочной. Вот ее и делают из кевлара и углеводородных соединений, прошивают для крепости нейлоновыми и золотыми нитями. А супинаторы, пяточные клинья, подметки и прочие элементы обуви подбирают с таким расчетом, чтобы уберечь ногу спортсмена от травм, разрывов сухожилий и мышц. Некоторые тренировочные кроссовки снабжают даже компьютером, чтобы спортсмен имел полную информацию о скорости бега, количестве шагов, величине перегрузок…


    Эпюры давления босой ноги на грунт тщательно изучаются специалистами.


    Спортивная обувь — синтез научно-технических достижений.

Ускорение до 300 g

    Поскольку мы с вами заговорили о безопасности, есть смысл поговорить и о том, как современная амуниция предохраняет спортсменов от травм и несчастных случаев.
    Головной шлем на сегодняшний день, пожалуй, наиболее разработанный защитный элемент в спортивном снаряжении. А первая попытка испытания шлемов на научной основе была предпринята в США Фондом Снелла в Уэйкфилде (шт. Род-Айленд) еще в 1957 году. Фонд назван в честь Питера Снелла, автогонщика, погибшего от черепных травм, полученных в гонках.
    В 1966 году получили распространение созданные фондом стандарты на шлемы для мотоциклистов и автогонщиков. Ныне Фонд распространил свои стандарты также на шлемы для горнолыжников, велосипедистов, конников.
    Один из параметров, обычно подвергаемый проверке, — сила удара, которую должен выдерживать шлем, сохраняя голову от повреждений. На испытаниях шлем, надетый на специальную болванку, сбрасывается с высоты около 3 м на плоскую или полукруглую наковальню. Максимальное отрицательное ускорение при ударе измеряется акселерометром, вмонтированным в центре тяжести системы «шлем — болванка».
    Физиологические исследования показали, что сотрясение мозга и другие травмы головы могут быть сведены к минимуму, если шлем выдерживает мгновенные ускорения порядка 300 g.
    Проводят также испытания на прочность ремешка, способность внешней оболочки сопротивляться проколу острым предметом.
    Обычно последнюю делают из стекловолокна или формованного под давлением пластика. Причем, как показывает практика, стекловолокно прочнее и долговечнее.


    Кроме того, шлемы снабжают внутренней ударопоглощающей подкладкой из сжимаемого пенополистирола или пенополиуретана. Как и в спортивной обуви, сжимаемые материалы являются идеальным поглотителем энергии. Шлемы для мотоциклистов, конников, лыжников, велосипедистов и бейсболистов могут быть рассчитаны на одиночный сильный удар, так что такая подкладка здесь вполне уместна. А вот в игровых видах спорта с силовыми приемами, таких, как американский футбол или канадский хоккей, шлем должен обеспечивать многократную защиту от ударов, и поэтому подкладка должна быть сделана из упругого материала.
    И когда в правила были внесены соответствующие изменения, запрещающие играть в хоккей без шлема, число черепно-мозговых повреждений и сотрясений мозга сократилось более чем вдвое.
    Сегодня специалисты разрабатывают усовершенствованную конструкцию шлема для боксеров. По их мнению, стоило бы и здесь изменить правила, запретив боксерам бить противника по голове, поскольку даже самый совершенный шлем не может обеспечить стопроцентную безопасность людям, которые выходят на ринг только для того, чтобы отправить соперника в нокаут, иными словами — потерять сознание.


    Диаграмма аэродинамического сопротивления различных видов одежды бегуна. Как видите, на результат может повлиять даже прическа.

Преодолеть земное тяготение

    Еще одна область, где последние достижения науки и техники позволяют существенно повысить спортивные результаты, — это прыжки, в особенности прыжки с шестом.
    Вспомним историю. Первый олимпийский чемпион нового времени Уилл Хойт показал рекордный результат того времени — 330 см! Прыгал он с деревянным шестом — по существу, с палкой. И когда появился бамбуковый шест, рекорд сразу подскочил до 477 см.
    Шесты из стали и алюминия позволили поднять планку мировых достижений всего на один сантиметр. Уже в ту пору все стали ждать: кто придумает лучший шест?
    Секрет изготовления фибергласового шеста охранялся фирмой как величайшая военная тайна. Еще бы: ведь благодаря этому шесту «летающий пастор» Боб Ричардс (он действительно был священником) стал двукратным олимпийским чемпионом. А когда он перестал прыгать, новый шест освоил другой американец, Джон Юлсес, и в 1960 году тоже выиграл Олимпийские игры с новым мировым рекордом.
    Ныне мировой рекорд перевалил уже за 6 м. Первым одолел эту высоту советский прыгун С. Бубка. И теперь вновь все ждут, когда появится новый шест-катапульта, который подбросит прыгунов еще выше.
    Ну а поскольку упрямое притяжение вновь возвращает прыгуна на землю, конструкторам пришлось немало поломать головы и над конструкцией места приземления. И если бы прыгунам не подкладывали там, «где упасть», толстенные поролоновые маты, многие из них могли бы свернуть шею.
    Вот-вот наступит новый этап и в эволюции беговой дорожки. Еще в начале XX века они были земляными, потом стали гаревыми, и, наконец, впервые на Олимпиаде в Мехико появилась синтетическая, тартановая — быстрая, как никакая другая. Именно с ее помощью спринтеры на стометровке преодолели рубеж в 10 секунд. Теперь вот ждут новую дорожку — такую, которая бы позволила им пробежать стометровку, скажем, секунд за восемь… Так есть ли предел человеческим возможностям?
    С.НИКОЛАЕВ

Кстати…

    В ПОИСКАХ СКРЫТЫХ РЕЗЕРВОВ…
    Впрочем, далеко не все определяется лишь техническими возможностями. Кое-чего — и даже многого — достигают сами атлеты. Некоторые из них устанавливают рекорды, которые затем остаются непобитыми многие десятилетия и даже века.
    История донесла до нас, например, что один из чемпионов античных Олимпийских игр, прыгун Фаилл, если верить сохранившимся данным, однажды прыгнул в длину на… 16,5 м! А ведь это почти вдвое дальше современных рекордсменов. Как ему это удалось?
    Кое-кто из историков спорта полагает, что Фаилл при прыжке держал в руках гальтеры — нечто вроде современных гантелей, — которые в самый последний момент отбрасывал назад, тем самым увеличивая свою «реактивную тягу». Однако все попытки современных атлетов скопировать технику Фаилла и превзойти его рекорд, ни к чему не привели…
    Еще одна головоломка античных времен относится к тяжелой атлетике. В музее Олимпии и по сей день можно увидеть камень, на котором высечена надпись: «Бибон поднял меня над головой одной рукой». Как он мог это сделать, если весит тот «камушек» 143 кг?!
    Попытки разгадать тайны древних времен, отыскать в них подсказку современным атлетам, как лучше всего готовиться к побитию рекордов, привели в конце концов к созданию новой науки — антропомаксималогии. У истоков ее стоял замечательный атлет, в прошлом рекордсмен СССР в метании копья, заслуженный мастер спорта, доктор педагогических наук Владимир Васильевич Кузнецов.
    Появление новой науки поначалу встретили в штыки. Но вскоре даже консерваторы были вынуждены признать, что, вобрав в себя достижения антропологии, биомеханики, физиологии, медицины, психологии, эта наука наметила новые пути к познанию возможностей человека.
    Самого Кузнецова давно уж нет с нами, но дело, начатое им, не погибло, живет и заставляет иначе думать о будущем спорта.
    Впрочем, только ли спорта?.. Герой Советского Союза Ю. А. Антипов как-то рассказал о случае из собственной практики. Во время испытаний самолет вошел в штопор, и спасти его не было никакой возможности. Пилот уже хотел покинуть машину, но катапульта не срабатывала, поскольку не отстреливался фонарь кабины. Антипов вручную отстегнул замки, но поток воздуха намертво прижимал фонарь… Собрав все силы, летчик руками отжал фонарь, открыл дорогу для катапультирования.
    Потом на тренажере специалисты имитировали эту ситуацию, и оказалось: Антипов, человек далеко не атлетического сложения, сумел приложить усилие в 220 кг! Помогла ему собрать силы жажда жизни. Сработал таившийся в недрах организма резерв.
    Вот эти резервы специалисты и хотят научить спортсменов использовать. Пока получается не все. Селекционеры от спорта ищут по дворам перспективных ребят — высокорослых подростков. Объяснение простое. Самый первый рекордсмен мира американец Уилл Пейдж, преодолевший в 1887 году высоту 193 см, имел рост всего 169 см. Сегодня бы его и близко к сектору для прыжков не подпустили. Там ныне царствуют гиганты ростом под 2 м и выше. То же самое можно наблюдать и на беговых дорожках…
    А взгляните на баскетболистов, волейболистов… Даже в футболе, по существу, не осталось игроков невысокого или среднего роста. А почему, собственно, такая дискриминация? Почему, например, в борьбе или тяжелой атлетике есть деления спортсменов по весу, а вот по росту нет!
    И пока чиновники от спорта размышляют над этим вопросом, специалисты по спортивной медицине ищут способы увеличить рост будущих спортсменов, увеличить скорость их передвижения, мышечную массу. В ход идут самые разнообразные фармакологические средства, и дело уж дошло до того, что многие нынешние спортсмены всерьез полагают: без допинга рекорда не видать! Так что не случайно на каждом крупном соревновании победителя ждет допинговый контроль. И многих уже поснимали с соревнований, дисквалифицировали за применение запрещенных препаратов.
    Но помогает все это слабо: слишком уж велика жажда олимпийского золота и больших премиальных. И в борьбе за них, получается, хороши любые средства.
    Кое-кто даже поговаривает, что в скором будущем в спортивных целях начнут использовать новейшие достижения генетики. И тогда спортсменов будут «растить под заказ»: пловцов с загребущими руками и ногами-ластами, штангистов и борцов — с горами мышц, бегунов — с двухметровыми ногами.
    Только вот нужен ли будет кому такой спорт?

ИНФОРМАЦИЯ

    НОВЫЙ ПЕРСПЕКТИВНЫЙ САМОЛЕТ С-80, созданный в КБ им. П.О. Сухого, совершит первый полет в апреле этого года. Он предназначен для замены устаревающих самолетов Ан-24, Ан-26 и Ан-28. Машина рассчитана на перевозку 25 пассажиров на местных авиалиниях протяженностью 1200 километров со скоростью 520 километров в час. Маркетинговые исследования показали возможность продажи 300–400 машин С-80 в России и за рубежом. На самолет С-80 прислали запросы Вьетнам, Таиланд, Китай и Малайзия.
    Первый опытный самолет уже доставлен в Москву из Комсомольска-на-Амуре и готовится к испытаниям в Летно-исследовательском институте (г. Жуковский). Программу летных испытаний С-80 планируется завершить за два года.

    «РАДИОМОСТ» ДЛИНОЙ В 2500 КМ. Эксперимент по программе «Квазар-КВО» был осуществлен в феврале 2001 года одновременно в двух радиоастрономических обсерваториях — «Светлое» под Санкт-Петербургом и «Зеленчукская» в Карачаево-Черкесской Республике. Суть его, как рассказал директор Института прикладной астрономии Андрей Финкельштейн, состояла в том, что два радиотелескопа работали синхронно, представляя собой как бы единый астрономический прибор «диаметром» в 2,5 тыс. км. Огромная разрешающая сила подобного инструмента даст новые возможности как в развитии фундаментальной науки, так и для решения практических задач в области обороны, прогнозирования землетрясений и других.
    Вводом в действие новой радиоастрономической обсерватории в станице Зеленчукской в конце 2000 года завершился очередной принципиально важный этап реализации программы. Для ее завершения предстоит построить еще одну обсерваторию в районе озера Байкал. Это позволит увеличить «диаметр» уникального радиотелескопа до 6 с лишним тысяч километров.

    ОРИГИНАЛЬНЫЙ ПОДЗЕМНЫЙ ЛОКАТОР сконструировали российские ученые. Он способен разглядеть на глубине строение подземных слоев на месте, выбранном под строительство. Вся картина записывается в память компьютера и может быть детально проанализирована. Прибор получился достаточно компактный и дешевый и найдет широкое применение при строительстве зданий, дорог, мостов, дамб и прочих сооружений, нуждающихся в надежных фундаментах.

    ВЗРЫВ ПРОТИВ ПОЖАРА. Новосибирские ученые установили, что фронт лесного пожара неоднороден. И чтобы остановить его распространение, можно воздействовать не непосредственно на пламя, а на его летучие компоненты, которые образуются в зоне горения — окись углерода, метан, водород… Они дают более 70 процентов энергии пожара. И если их каким-то образом нейтрализовать, горение прекратится.
    Но как это сделать? Проще всего с помощью взрыва. Шнуровой заряд взрывают непосредственно при подходе фронта пожара. Воздушная волна сбивает пламя, нарушает условия пиролиза, и пожар затухает.

УДИВИТЕЛЬНОЕ — РЯДОМ
Гроза небесная и гроза… земная



    Художник Ю. САРАФАНОВ

    Это случилось темной августовской ночью 1996 года в глухой карельской тайге, близ побережья Ладоги. Местный егерь возвращался домой по просеке после обхода участка. Внезапно темное небо осветилось яркой вспышкой, дрогнула под ногами земля, и где-то глухо грохнуло. И тут же над лесом почти вертикально поднялся огненный шар и скрылся в тучах.
    «Наверное, с соседнего полигона какая-нибудь штуковина взлетела или шпана костер разожгла над старым снарядным складом, — решил егерь. — Придется завтра пойти проверить».
    Подождав еще немного и убедившись, что все тихо и дальний взрыв не вызвал лесного пожара, очевидец странного происшествия пошел домой. А на следующий день, добравшись до района, где ночью произошла вспышка, увидел следующую картину. Земля на протяжении сотен метров была выворочена так, что образовалась ровная неглубокая траншея. Деревья, которые оказались на ее пути, были вырваны с корнями и отброшены в сторону. А корни у многих были обуглены и дымились.
    Можно было предположить, что здесь зачем-то производили взрывные работы. Но почему ночью?
    Дело окончательно запуталось, когда через несколько дней на место происшествия прибыли специалисты, в том числе и военные с полигона. Они уверяли, что той ночью никаких стрельб и испытаний не велось; не похожа странная воронка и на следствие локального взрыва боеприпасов. Геологи тоже засвидетельствовали, что никаких траншей здесь не рыли, а взрывных работ даже не планировали.
    Специалисты почесали затылки, на всякий случай прошлись вдоль нерукотворной канавы с радиометром, но все было чисто. С тем и отбыли, не придя к какому-либо окончательному заключению. А наблюдательный лесник обнаружил еще одну странную особенность: у одного из деревьев, кроме обугленных корней, оказалась обгоревшей и вершина, словно ее поразила молния. Но когда гроза-то случилась? Метеорологи божились, что никаких атмосферных фронтов поблизости не проходило.
    И тем не менее гроза была. Только необычная — подземная.
    «Интересно отметить, — пишет по этому поводу кандидат физико-математических наук Валентин Псаломщиков, — что, если бы этот случай произошел лет сто назад, тогдашние геофизики без труда объяснили бы его именно как следствие подземной грозы».
    Так, в 1903 году известный французский исследователь Жорж Дари в своей книге «Электричество во всех его применениях» отмечал, что «земное электричество производит бури, которые разрушают внутреннее строение нашей планеты точно так же, как бури в атмосфере приводят в беспорядок воздушное пространство».
    В то время даже считали, что известные всем землетрясения вызываются, несомненно, электричеством. Земля, дескать, наэлектризована во всей своей совокупности, и сильные электрические токи беспрестанно пробегают по ней. «И если воздух сух и горяч или настолько насыщен электричеством, что не может принять в себя избытка его, выделяемого землею, если залежи мела и кремнистых почв находятся поблизости от мест, богатых металлами, тогда накопление электричества в конце концов ведет к разряду совершенно так же, как это бывает во время атмосферной грозы».
    Такая вот любопытная теория была разработана Ж. Дари и его коллегами еще в 1895 году.
    И, как писал сам исследователь, «в настоящее время она признана многими метеорологами и физиками, которые нашли новые, подтверждающие ее факты».
    Однако прошло еще некоторое время, и выяснилось, что француз скорее всего перепутал причину со следствием. Не электричество вызывает землетрясения, а перемещение земных слоев относительно друг друга приводит к электризации, накоплению электростатического заряда, в точности так же, как хаотические движения кристалликов льда, частичек пыли в облаке приводят к накоплению «небесного электричества» грозы.
    В начале 70-х годов XX века такую гипотезу в подробностях обосновал профессор Томского политехнического института А. А. Воробьев. Более того, собрав группу единомышленников из молодых сотрудников, он приступил к экспериментам в разных районах страны. Цель их была такова: если при подвижках горных пластов происходит их электризация, значит, неизбежно при этом должны генерироваться и радиоволны. Всем ведь известно, что во время грозы практически невозможно слушать радиоприемник — слова диктора и музыка начисто забиваются радиоголосом грозы. Но коли так, значит, в принципе появляется возможность предсказывать по радиоголосу и приближение грозы подземной, то есть землетрясения…
    Исследователям действительно удалось зафиксировать усиление напряженности подземного радиофона непосредственно перед землетрясениями! Но попытки представить результаты этой важной работы в самый престижный научный журнал — «Доклады Академии наук СССР» — натолкнулись на сопротивление оппонентов из Института физики Земли АН СССР.
    Еще бы! Какой-то ученый с периферии посягнул на монополию столичных светил. Однако разгромив в пух и прах идею Воробьева, кое-кто не утерпел и рискнул сам провести аналогичные эксперименты. В итоге через несколько лет статьи на те же темы все-таки появились в научной печати. Только уж, конечно, без ссылок на Воробьева и его коллег.
    Томский же исследователь и его сотрудники тем временем выдвинули еще ряд интересных идей. По их выкладкам и опытам получалось, что радиоголоса имеют еще очень многие явления природы: снег во время метели и перед сходом лавины; ледовые поля во время подвижек и торошения; ледники во время спуска с гор…
    А также процессы растрескивания горных пород, осадка недавно построенного здания…
    Но, к сожалению, ранняя смерть профессора Воробьева фактически поставила крест на его работах. Про подземные грозы и «радиоголоса» природы не то чтобы забыли… Просто у нынешних исследователей руки до них не доходят. И денег нет. Да.
    А жаль… Подземные грозы еще о многом могли бы рассказать пытливому уму. Глядишь, и грандиозная задача надежного прогнозирования землетрясений тоже сдвинулась бы с мертвой точки.
    Олег СЛАВИН

У СОРОКИ НА ХВОСТЕ



    ГОРЮЧЕЕ ИЗ ОЧИСТКОВ. Картофельные очистки, арбузные корки, кожура от бананов, прелые капустные листья — все идет в дело и приносит пользу рачительным швейцарцам. Славящиеся своей изобретательностью, они придумали пищевым отходам необычное применение — из них производят… горючее для автомобилей. Промышленные службы кантона Цюрих уже заявили о намерении поощрять использование такого топлива. Они утверждают, что 100 кг компоста без проблем обеспечат 100-километровый пробег автомобиля. Правда, для этого полученный из него биогаз должен пройти обработку: его очищают от углекислого газа и повышают содержание метана с 65 до 96 %.
    Подобное решение имеет массу преимуществ. «Зеленых» отходов в городах становится все больше, в силу чего их можно считать возобновляемым источником энергии. А кроме того, исчезнет проблема устранения неприятного запаха помоек.

    ИСПЫТЫВАЕТСЯ НОВЫЙ МЯЧ. На футбольных полях Англии и Испании в грядущем сезоне появится новый футбольный мяч. Он существенно легче прежнего, но летит заметно быстрее. Нападающие лондонского «Арсенала», познакомившиеся с новым мячом на предсезонных сборах, отметили: «Теперь голов должно стать существенно больше». Недовольны только вратари. Голкипер английского «Ливерпуля» Зандер пожаловался: «Мяч какой-то юркий, его трудно поймать».

    НЕАНДЕРТАЛЬЦЫ ХРАНИЛИ МАМОНТОВ В… РЕФРИЖЕРАТОРЕ. Археологи утверждают, что доисторический человек умел хранить пищу в течение долгого времени. Например, когда мужчины племени заваливали мамонта или какого-то другого крупного зверя, они, конечно же, не съедали его разом. Животное разрубали на части, и те, которые можно было дольше хранить, помещали в холодные воды озера. Недавно это предположение получило свое подтверждение. Ученые из Мичиганского университета обнаружили на дне одного из водоемов на юге штата останки древних животных. И что удивительно, как сообщает еженедельник «Weekly World News», на ребрах и частях позвоночника сохранились остатки мяса.

    ЖИВОЙ ПРОТОТИП. Французский автогигант «Рено» намерен перебраться во второе столетие своего существования на машине с коротким названием «Зо». Его можно расшифровать как «зооморфный автомобиль». Создателей этой машины вдохновил образ жука-скарабея, способного мчаться по любой местности. Цветом и формами «Зо» и впрямь напоминает насекомое, считавшееся священным в Древнем Египте. Впрочем, необычная форма является вовсе не прихотью конструкторов, а плодом точнейших расчетов. Главная цель, которую они преследовали — обеспечить наилучшие аэродинамические свойства, гарантировать водителю максимальный обзор и удобство управления.

С ПОЛКИ АРХИВАРИУСА
Реактивные, но… винтовые

    Максимальная скорость некоторых современных самолетов (3–4 тысячи км/ч) поражает воображение. Но даже у великих держав таких машин немного, две-три сотни. Основная же масса реактивных самолетов, перевозящая в год миллионы тонн грузов, миллиарды пассажиров, ведущая патрульную службу вдоль границ и на океанских просторах, принимающая участие в боевых действиях, летает со скоростью, освоенной еще в годы войны — 800 — 1000 км/ч.
    Конечно, хорошо бы летать быстрее. Но для этого нужно тратить в 8 — 10 раз больше топлива. Между тем и сегодня авиация пожирает его столько, сколько весь автотранспорт. В разумной мере скоростной и экономичной она стала лишь после длительной работы над усовершенствованием двигателей, которая была ознаменована и успехами, и поражениями. Рассмотрим все по порядку.


    В 20-е годы конструкторам казалась едва достижимой прибавка к скорости очередной сотни км/ч, а теоретики уже думали о сверхзвуковых скоростях. Но знали: винт и поршневой двигатель придется чем-то заменять. И вот почему.
    Пока скорость много меньше скорости звука, воздух расступается перед движущимся телом и сопротивление возникает сравнительно небольшое. По мере приближения к скорости звука воздух становится все плотнее, сжимается, сопротивление растет.
    Не на всех частях винтовых самолетов это сказывалось в равной мере. При скоростях 700–800 км/ч крылья, например, еще работают неплохо. И сопротивление их невелико, и подъемная сила достаточна. С винтом же все иначе. Винт, по существу, то же крыло, только вращающееся. Собственная скорость его лопастей складывается (по правилу параллелограмма) со скоростью полета. В точках на концах лопастей скорость относительно воздуха оказывается значительно больше скорости звука. Здесь возникает область сжатия — и тяга винта падает.
    Видя это, некоторые авиаконструкторы, например советский изобретатель П.Гроховский, хотели применить вместо винта центробежный вентилятор. Полагая при этом, что самолету с таким движителем крылья не нужны (рис. 1).



    Другие изобретатели, анализируя положение, отмечали, что линейная скорость различных частей винта неодинакова. Она велика только на концах и мала в середине как неизбежное следствие вращательного движения. Из этого делался логичный вывод. Винт можно заменить крылом, движущимся параллельно самому себе с умеренной скоростью.
    Так возродилась бытовавшая на заре воздухоплавания идея воздушного гребного колеса (рис. 2).


    Рис. 2

    Размышляя в этом направлении, некоторые додумались даже до крыльев параллельного взмаха.
    Но идея, безупречная с точки зрения чистой логики, оказалась технически не осуществима. Несмотря на кажущуюся простоту, в этих механизмах возникали сложные процессы, ставившие инженеров в тупик…
    Однако вернемся к теории.
    Тяга винта создается за счет реактивной силы отбрасывания масс воздуха назад по ходу полета. Совершить это можно и без помощи механизмов. Например, работавший в США русский инженер А.Н.Прокофьев-Северский предлагал отбрасывать воздух электрическим полем, что привело бы к появлению экологически чистых бесшумных «ионокрафтов» (рис. 3).


    Рис. 3

    Другие изобретатели, начиная с К.Э.Циолковского, предлагали воздушно-реактивные двигатели (ВРД), создающие тягу за счет сжигания в камере сгорания топлива. Именно их и использует современная реактивная авиация.
    В двигателе Циолковского при помощи компрессора, работающего от поршневого мотора, сжимался воздух. В него впрыскивалось и сжигалось топливо. Образующиеся продукты сгорания, с большой скоростью вытекая из сопла, создают реактивную тягу (рис. 4).


    Поскольку современные ВРД используют газовые турбины, часто думают, что идея Циолковского оказалась не вполне работоспособна. Но это не так. Первый самолет с двигателем такого типа (их называют моторно-компрессорными) был построен в 1940 году в Италии (рис. 5).


    Рис. 5

    Скорость опытного образца была еще невелика — 330 км/ч. В 1943 году та же фирма построила моторно-компрессорный истребитель, но испытать его из-за поражения в войне не успела. Аналогичный самолет, построенный у нас в 1946 году, развил 800 км/ч.
    Хотя поршневой двигатель экономичнее и дешевле турбины, от него отказались. И вот почему.
    Выходящие из нее продукты лишь часть своей энергии отдают лопаткам турбины. Покидая их, они имеют высокую скорость и за счет этого создают реактивную тягу.
    Первый самолет с газотурбинным ВРД был построен в Германии в 1939 году (рис. 6).


    К 1950 году скорость самолетов, оснащенных такими двигателями, превысила скорость звука. Но военным требовались скоростные самолеты дальнего действия. Расход же топлива с газотурбинным ВРД был непомерно велик. С одной стороны, это было вызвано низким термическим КПД газовых турбин того времени. Но имелась и иная причина. Дело в том, что энергия реактивной струи только тогда полностью идет на создание тяги, когда скорость ее истечения равна скорости самолета. А она у этих двигателей была почти в два раза больше, чем скорости, реально освоенные в авиации. Поэтому полученная энергия использовалась лишь наполовину.
    Избежать этого можно было, лишь минуя уменьшение скорости истечения продуктов сгорания при одновременном увеличении их массы. Сделать это без изменения конструкции двигателя, например, подмешивая к топливу побольше воздуха, было нельзя. От этого падал бы и без того низкий термический КПД турбины. Он был ниже, чем у паровых машин прошлого века.
    То, что такая ситуация может возникнуть, предвидели давно. В 1937 году советский изобретатель Л.М.Люлька (впоследствии генеральный конструктор) предложил реактивный двигатель (рис. 7), имевший одно, казалось бы, незначительное отличие.


    Первые ступени компрессора были несколько увеличены и могли засасывать гораздо больше воздуха, чем его было нужно для сгорания топлива. Излишек направлялся по внешнему контуру в обход камер сгорания. Обтекая горячие стенки, смешиваясь в дальнейшем с продуктами сгорания, он подогревался, увеличивая свою скорость. Такие двигатели называют двухконтурными. На больших дозвуковых скоростях они сократили расход топлива в два раза. Стали возможны даже перелеты через океан.
    Сегодня все самолеты, рассчитанные на дальние полеты, имеют подобные двигатели. Первые ступени их компрессоров называют вентиляторами. Это они увеличивают массу отбрасываемого воздуха и делают двигатель экономичным.
    Но, в сущности, их можно рассматривать как многопластовые воздушные винты в скрытой форме. Они расположены за входным диффузором, там, где скорость набегающего потока значительно снижена. Лопасти их относительно коротки. Скорость на концах лопастей мало отличается от скорости остальных точек. Не об этом ли мечтали те, кто предлагал заменить винт на экзотическую конструкцию типа гребного колеса?
    Итак, подведем итог. На смену винтовым аэропланам в 40-е годы пришли, как предсказывал Циолковский, аэропланы реактивные. Их на время сменили аэропланы, имеющие в скрытой форме винты. Когда освоение больших сверхзвуковых скоростей станет экономически рентабельным, неизвестно. Но лишь тогда начнется эра аэропланов чисто реактивных.
    А.ИЛЬИН

ВЕСТИ С ПЯТИ МАТЕРИКОВ

    КОРАБЛЬ-НЕВИДИМКА для десанта построен в США. Он представляет собой катамаран прямоугольной формы, выполненный по технологии «стеллс». Той, что используется в авиации на самолетах F-117 и В-2. Как полагают, новое судно сможет практически незамеченным доставлять десантников до самого берега. Впрочем, опыт эксплуатации самолетов-невидимок показал, что они далеко не всегда оправдывают возлагавшиеся надежды…


    МОРОЖЕНОЕ, которое не пачкает рук, появится вскоре в Германии. Извлеченная из холодильника порция даже при 25-градусной жаре станет таять лишь через 10 минут. Времени вполне достаточно, чтобы все съесть без остатка. А своей устойчивостью к теплу мороженое обязано специальной добавке, которая представляет собой порошок, который ранее использовался Дюссельдорфской… металлургической компанией для стабилизации некоторых сплавов. Только, конечно, его пришлось соответствующим образом модифицировать.

    СОЛНЕЧНЫЕ БАТАРЕИ без кремния разработали ученые Индийского научного института в Бангалоре (штат Западная Бенгалия). Основу их составляет сплав меди, индия и галлия. По словам одного из авторов новой разработки, С.Б.Купанитки, новые батареи получаются столь тонкими, что их можно скручивать в трубочку, словно бумажный лист.

    ПУШКА, «СТРЕЛЯЮЩАЯ» ГОРЯЧЕЙ ВОДОЙ, построена специалистами компании «Петрел инжиниринг», базирующейся в Кейптауне (ЮАР). В отличие от обычных водометов, она действительно выбрасывает почти кипяток. Струя горячей воды легко режет лед. И это весьма пригодилось участникам очередной антарктической экспедиции. За несколько часов работы они соорудили удобный ледовой причал для швартовки и разгрузки судов.

    ВИСЯЧИЙ ЗАМОК XXI ВЕКА должен выглядеть современно, считают американские изобретатели. Они предлагают конструкцию, которую вы видите на фото. Говорят, одолеть новый замок незваным лицам куда сложнее, чем старый.


    «НЕ СПИТЕ С МОБИЛЬНИКОМ», — призывают швейцарские медики. И дело не в том, что неурочный телефонный звонок может раздаться в самое неподходящее время. Эти аппараты выделяют излучение, которое отрицательно влияет на ритм сна.

    КОСМИЧЕСКУЮ СТАНЦИЮ ДОВЕРИЛИ… ПАУКАМ. Такой эксперимент затеяли австралийские ученые из Мельбурнского университета. Они хотят отправить на орбиту партию пауков и понаблюдать, какую сеть сплетут они в невесомости. Затем конструкторы разберутся в ней и скопируют. И возможно, на базе паучьего опыта родится орбитальная станция, на которой с удобствами смогут разместиться несколько тысяч человек.

    ГОРНОЛЫЖНИКИ ПРИСПОСОБИЛИ… НЕБОСКРЕБЫ. Фанаты горнолыжного спорта нашли в Германии способ обходиться без гор и даже без снега. Они теперь катаются по крутой наклонной стене одного из небоскребов, покрыв ее скользким пластиком. Испытавшие такой спуск спортсмены говорят, что скорость тут даже выше, чем на самой крутой трассе. А кроме того, не надо тратить время и деньги, чтобы отправляться в горы. Еще одно удобство — на вершину горы-небоскреба нетрудно подняться на обыкновенном лифте.

    «СОЛНЕЧНЫЕ» ПАНЕЛИ НА ШПАЛАХ предлагают установить на железных дорогах исследователи американского университета в Орегоне. Логика в их предложении, определенно, имеется. Солнечные элементы смогут снабжать даровой энергией пробегающие по рельсам поезда. А вот в районах, где зимой железнодорожное полотно заносит снегом, можно использовать вариант, предложенный физиками. А именно — заложить в шпалы пьезоэлементы. Они будут вырабатывать электричество за счет сжатия под тяжестью проходящих поездов.


ФАНТАСТИЧЕСКИЙ РАССКАЗ
«Галактический заговор»
Продолжение

    Начало в № 4 за 2001 г.
    Юрий ЕРШОВ


    Художник Ю. СТОЛПОВСКАЯ

    6. ГЛУБОКОЕ БУДУЩЕЕ
    — Первые, не совсем удачные опыты с современными контурами проводились на островах, — Виллена указала на участок удивительного глобуса. — Возможно, в вашем веке есть предания о необъяснимых феноменах, происходивших в этом квадрате? Необъяснимые феномены? Тайны, загадки?
    Вопрос был явно по адресу.
    Иван подошел поближе. Два громадных материка, разделенные широким проливом, нависали над гроздью крошечных островков. Рядом плавала парочка островов покрупнее.
    Материки изменились, но не узнать их было невозможно:
    — Северная Америка, Южная, Карибское море. Бермудский треугольник! Теперь ясно, куда подевались тысячи кораблей и самолетов!
    Виллена пожала плечиком:
    — Тайны двадцать первого века легко объяснимы.
    Какие именно тебя интересуют? Хочешь, расскажу о тех, кто прилетел в Солнечную систему на Луне? Или об удивительной расе существ, населявших Землю два миллиарда лет назад? Или о случайном расстреле планеты Фаэтон?
    — Для начала давай выясним вот что: где же расположен ваш научный центр?
    — Наверное, ты хотел спросить «когда»? Фанерозойский эонотем. Палеозойская эра. Девонский период, около четырехсот тридцати миллионов лет назад…
    Не пугайся — это не так много. До недавнего момента мы свободно общались со своим отрезком времени через Главный Портал. Лишь шаг отделял нас от времен Федерации, но перед объявлением войны туннель закрылся. Предполагается — Главный Портал уничтожен противником. А патрули атеков не дают нам пробиться в свое время.
    — А как вы узнали об объявлении войны, если нет связи?
    — Майор Аджалл перехватил трансляцию в дальнем походе. Из сообщения мы узнали о существовании метаморфов и начале военных действий. Тогда же группа Аджалла потеряла два хронокрейсера. Сейчас на научной станции остался лишь один боевой корабль и несколько исследовательских посудин…
    Овальное окно заслонила тень. Виллена радостно выдохнула:
    — Аджалл! Разведчики вернулись!
    На площадку перед зданиями научного центра мягко опустился громадный диск. Покачавшись на опорах, хронокрейсер заглушил силовые установки. Под помятую броню спрятались стволы плазменных орудий.

    7. ПЕРВЫЙ ПОЛЕТ
    Они проводили дни вместе. Говорили обо всем: о политике прошлого и искусстве будущего, о программном обеспечении для автоматических заводов по производству молекулярных чипов, о новейших прививках от электронных мультивирусов и о безнадежно устаревших моделях компьютеров. Виллена и Иван находили интересные обоим темы и быстро научились понимать друг друга с полуслова.
    Очень нелегко Ивану давалось управление глайдером. Оказалось, что трудно научиться согласовывать мысль с командой, известной генеральному процессору. Но он старался…
    На обзорном экране мелькнули силуэты высотных зданий научного центра. И вновь Ивана поразило сходство с картинкой, появившейся на экране его рабочего компьютера. Поразительное, необычайное, волшебное сходство.
    — Такие мощные постройки должны были пережить геологические эпохи. Однако наши археологи не находили этот древний город.
    — Центр просуществует две тысячи лет. Затем наступит океан, отхлынет назад и наступит вновь. Спустя многие миллионы лет на развалинах города побывают люди и проникнут в уцелевшие хранилища и подземные галереи. Здесь возникнет мощная культура. Об этой цивилизации египетский жрец расскажет Соломону — прадеду знаменитого Платона. В конце концов, континент, на котором стоит город, навсегда покроет многокилометровая толща воды. Но до тридцать девятого века дойдет легенда о погибшей расе, повелевающей миром, и обрывки знаний, оставленных ими. Ты, должно быть, тоже слышал про могучих атлантов?
    Иван хмыкнул:
    — Еще бы! Скажи, Виллена, не вы приложили руку к появлению монстра в озере Лох-Несс?
    — О! Это моя личная оплошность! Сейчас-то я распоряжаюсь на правах опытного инструктора, а видел бы ты, как я сама училась управлять хронокатером! При прыжке из мелового периода моя машина захватила с собой громадного плезиозавра. Представляешь?! Дополнительная масса изменила направление временного туннеля. Мы вырвались в Северной Шотландии шестнадцатого века. Почти через сотню лет престарелого плезиозавра удалось поймать и удалить, но предания дожили до времен Галактической Федерации!
    Девушка расхохоталась. А Ивану стало жаль тайн недавно ушедшего двадцатого века, до рождения которого оставалось еще четыреста тридцать миллионов лет.

    8. СОПЕРНИК