Скачать fb2
Feynmann 7

Feynmann 7


    Глава 30
    ВНУТРЕННЯЯ ГЕОМЕТРИЯ КРИСТАЛЛОВ
    § 1. Внутренняя геометрия кристаллов
    § 2. Химические связи в кристаллах
    § 3. Рост кристаллов
    § 4. Кристаллические решетки
    § 5. Симметрии в двух измерениях
    § 6. Симметрии в трех измерениях
    § 7. Прочность металлов
    § 8. Дислокации и рост кристаллов
    § 9. Модель кристалла по Брэггу и Наю
    § 1. Внутренняя геометрия кристаллов
    Мы закончили изучение основных законов электричества и магнетизма и теперь можем заняться электромагнитными свойствами ве­щества. Начнем с изучения твердых тел, точнее кристаллов. Если атомы в веществе движутся не слишком активно, они сцепляются и рас­полагаются в конфигурации с наименьшей возможной энергией. Если атомы где-то разместились так, что их расположения отве­чают самой низкой энергии, то в другом месте атомы создадут такое же расположение. По­этому в твердом веществе расположение ато­мов повторяется.
    Иными словами, условия в кристалле тако­вы, что каждый атом окружен определенно расположенными другими атомами, и если посмотреть на атом такого же сорта в другом месте, где-нибудь подальше, то обнаружится, что окружение его и в новом месте точно та­кое же. Если вы выберете атом еще дальше, то еще раз найдете точно такие же условия. Порядок повторяется снова и снова и, конечно, во всех трех измерениях.
    Представьте, что вам нужно создать рисунок на обоях или ткани или некий геометрический чертеж для плоской поверхности, в котором (как вы предполагаете) имеется элемент, повто­ряющийся непрерывно снова и снова, так что можно сделать эту поверхность настолько боль­шой, насколько вам захочется. Это двумерный аналог задачи, которая решается в кристалле в трех измерениях. На фиг. 30.1,а показан общий характер рисунка обоев. Один элемент повторяется регулярно, и это может продолжаться бесконечно.

   
    Фиг. 30.1. Повторяющийся рисунок обоев в двух намере­ниях.
    Геометрические харак­теристики этого рисунка обоев, учитывающие толь­ко его свойства повторяе­мости и не касающиеся геометрии самого цветка или его художественных достоинств, показаны на фиг. 30.1,б. Если вы возьмете за отправную какую-то точку, то смо­жете найти соответствующую точку, сдвигаясь на расстоя­ние а в направлении, указанном стрелкой 1. Вы можете попасть в соответствующую точку, также сдвинувшись на рас­стояние b в направлении, указанном другой стрелкой. Конечно, имеется еще много других направлений. Так, вы можете из точки a отправиться в точку b и достигнуть соответствующего положения, но такой шаг можно рассматривать как комбина­цию шага в направлении 1 вслед за шагом в направлении 2. Одно из основных свойств ячейки состоит в том, что ее можно описывать двумя кратчайшими шагами к соседним эквивалент­ным расположениям. Под «эквивалентными» расположениями мы подразумеваем такие, что в каком бы из них вы ни находи­лись, поглядев вокруг себя, вы увидите точно то же самое, что и в любом другом положении. Это фундаментальное свойство кристаллов. Единственное различие в том, что кристалл имеет трехмерное, а не двумерное расположение и, естественно, каж­дый элемент решетки представляет не цветы, а какие-то образо­вания из атомов, например шести атомов водорода и двух ато­мов углерода, регулярно повторяющихся. Порядок расположе­ния атомов в кристалле можно исследовать экспериментально с помощью дифракции рентгеновских лучей. Мы кратко упоми­нали об этом методе раньше и не будем добавлять здесь к сказанному чего-либо, а отметим лишь, что точное расположе­ние атомов в пространстве установлено для большинства простых кристаллов, а также для многих довольно сложных кристаллов.
    Внутреннее устройство кристалла проявляется по-раз­ному. Во-первых, связующая сила атомов в определенных нап­равлениях сильнее, чем в других направлениях. Это означает, что имеются определенные плоскости, по которым кристалл разбить легче, чем в других направлениях. Они называются плоскостями спайности. Если кристалл расколоть лезвием ножа, то скорее всего он расщепится именно вдоль такой пло­скости. Во-вторых, внутренняя структура часто проявляется в форме кристалла.
    Представьте себе, что кристалл образуется из раствора. В растворе плавают атомы, которые в конце концов пристраи­ваются, когда находят положение, отвечающее наименьшей энергии. (Все происходит так, как если бы обои были созданы из цветов, плавающих в разных направлениях до тех пор, пока случайно один из цветков не зацепился бы накрепко за определенную точку, за ним другой и т. д., пока постепенно не образовался узор.) Вы, вероятно, догадываетесь, что в одних направлениях кристалл будет расти быстрее, чем в других, создавая по мере роста некоторую геометрическую форму. Именно поэтому внешняя поверхность многих кристаллов но­сит на себе отпечаток внутреннего расположения атомов.
    В качестве примера на фиг. 30.2,a показана типичная форма кристалла кварца, ячейка которого гексагональна. Если вы внимательно посмотрите на этот кристалл, то обнаружите, что его внешние грани образуют не слишком хороший шестиуголь­ник, потому что не все стороны имеют одинаковую длину, а часто бывают даже совсем разными.
   
    Фиг. 30.2. Природный кристалл кварца (а), крупинки соли (б) и слюды (в).
    Но в одном отношении этот шестиугольник вполне правильный: углы между гранями составляют в точности 120°. Ясное дело, размер той или иной грани случайно складывается в процессе роста, но в углах проявляется геометрия внутреннего устройства. Поэтому все кристаллы кварца имеют разную форму, но в то же время углы между соответствующими гранями всегда одни и те же.
    Внутреннее геометрическое устройство кристалла хлори­стого натрия также легко понять из его внешней формы.
    На фиг. 30.2, б показана типичная форма крупинки соли. Это опять не совершенный куб, но грани действительно перпендикулярны друг другу. Более сложный кристалл — это слюда, он имеет форму, изображенную на фиг 30.2, в. Этот кристалл в высшей степени анизотропен — он очень прочен в одном направлении (на рисунке — горизонтальном) и его трудно расколоть, а в другом направлении он легко расщепляется (в вертикальном). Обычно он используется для получения очень прочных, тонких листов. Слюда и кварц — примеры природных минералов, содержащих кремний. Третий минерал, содержащий кремний,— это асбест, обладающий тем интересным свойством, что его легко растянуть в двух направлениях, а в третьем он не поддается растягиванию. Создается впечатление, что он сделан из очень прочных нитей.
    § 2. Химические связи в кристаллах
    Механические свойства кристаллов несомненно зависят от рода химических связей между атомами. Поражающая неоди­наковая прочность слюды по разным направлениям зависит от характера межатомной связи в этих направлениях. Вам на­верняка уже рассказывали на лекциях по химии о разных ти­пах химических связей. Прежде всего бывают ионные связи, мы уже говорили о них, когда толковали о хлористом натрии. Грубо говоря, атомы натрия теряют по одному электрону и ста­новятся положительными ионами; атомы хлора приобретают электрон и становятся отрицательными ионами. Положитель­ные и отрицательные ионы располагаются в трехмерном шах­матном порядке и удерживаются вместе электрическими си­лами.
    Ковалентная связь (когда электроны принадлежат одновре­менно двум атомам) встречается чаще и обычно более прочна. Так, в алмазе атомы углерода связаны ковалентными связями с ближайшими соседями в четырех направлениях, поэтому-то кристалл такой твердый. Ковалентная связь имеется и в кри­сталле кварца между кремнием и кислородом, но там связь на самом деле только частично ковалентная. Поскольку там электроны распределяются неравномерно между двумя атомами, атомы частично заря­жены и кристалл до некоторой степени ионный. Природа не так проста, как мы пытаемся ее представить: существуют все­возможные градации между ковалентной и ионной свя­зями.
    Кристалл сахара обладает другим типом связи. Он состоит из больших молекул, атомы которых сильно связаны ковалентной связью, так что молекула образует прочную структуру. Но так как сильные связи вполне насыщены, то между отдель­ными молекулами имеется относительно слабое притяжение. В таких молекулярных кристаллах молекулы сохраняют, так сказать, свою индивидуальность, и внутреннее устройство можно изобразить так, как на фиг. 30.3.
   
    Фиг. 30.3. Решетка молекуляр­ного кристалла.
    Поскольку молекулы не очень крепко держатся друг за друга, то кристалл легко можно расколоть. Такого рода кристаллы резко отличаются от кристаллов типа алмаза, который есть не что иное, как одна гигантская молекула, не поддающаяся разлому без того, чтобы не нарушить сильные ковалентные связи.
    Другим примером молекулярного кристалла может служить парафин.
    Предельным случаем молекулярного кристалла являются вещества типа твердого аргона. Там притяжение между ато­мами незначительно — каждый атом представляет собой вполне насыщенную одноатомную «молекулу». Но при очень низких температурах тепловое движение настолько слабо, что кро­шечные межатомные силы могут заставить атомы расположить­ся в правильном порядке, подобно картофелинам, тесно наби­тым в кастрюле.
    Металлы образуют совсем особый класс веществ. Там связь имеет совершенно другой характер. В металле связь возникает не между соседними атомами, а является свойством всего кри­сталла. Валентные электроны принадлежат не одному-двум атомам, а всему кристаллу в целом. Каждый атом вкладывает свой электрон в общий запас электронов, и положительные атомные ионы как бы плавают в океане отрицательных электронов. Электронный океан, подобно клею, удерживает ионы вместе.
    Поскольку в металлах нет особых связей в каком-то опре­деленном направлении, то там связь слабо зависит от направ­ления. Однако металлы — это еще кристаллические тела, по­тому что полная энергия принимает наименьшее значение, когда ионы образуют упорядоченную систему, хотя энергия наиболее выгодного расположения обычно ненамного ниже других возможных расположений. В первом приближении атомы многих металлов подобны маленьким шарикам, упако­ванным с максимальной плотностью.
    § 3. Рост кристаллов
    Попробуйте представить себе образование кристаллов на Земле в естественных условиях. В поверхностном слое Земли все сорта атомов перемешаны между собой. Вулканическая дея­тельность, ветер и вода постоянно их смешивают, и они то и дело взбалтываются и перемешиваются. Но, несмотря на это, каким-то чудом атомы кремния постепенно начинают отыскивать друг друга, а потом и атомы кислорода, чтобы образовать вместе кремнезем. К одним атомам поодиночке пристраиваются дру­гие, образуя кристалл, и смесь разделяется. А где-нибудь по со­седству атомы хлора и натрия находят друг друга и строят кристалл соли.
    Как же получается, что кристалл, начав строиться, позво­ляет присоединяться к себе только определенному сорту ато­мов? Так происходит потому, что вся система в целом стремится к наименьшему возможному значению энергии. Растущий кри­сталл примет новый атом, если благодаря ему энергия станет наименьшей. Но откуда кристалл знает, что атом кремния (или кислорода), будучи поставлен в данное место, приведет к наи­меньшему значению энергии? Узнаёт он это методом проб и ошибок. В жидкости все атомы находятся в непрестанном дви­жении. Каждый атом ударяется о соседние примерно 1013 раз в секунду. Если он ударяется о подходящее место в растущем кристалле, вероятность того, что он улетит обратно, будет несколько меньше там, где меньше энергия. Продолжая так пробовать миллионы лет, с частотой 1013 проб в секунду, атомы постепенно оседают на тех местах, где находят для себя поло­жение с наименьшей энергией. В конце концов из них выра­стают большие кристаллы.
    § 4. Кристаллические решетки
    Расположение атомов в кристалле — кристаллическая ре­шетка — может принимать множество геометрических форм. Мы опишем сначала простейшие решетки, характерные для большинства металлов и инертных газов в твердом состоянии. Это кубические решетки, которые могут быть двух видов: объемноцентрированная кубическая (фиг. 30.4, а) и гранецентрированная кубическая (фиг. 30.4, б).
   
    Фиг. 30.4. Элементарная ячейка кубического кристалла, а — объемноцентрированная; б — гранецентрированная.
    Конечно, на рисунках показан только один «куб» решетки; вы должны мысленно пред­ставить, что все это повторяется в трех измерениях до беско­нечности. Для простоты на рисунке показаны только «центры» атомов. В настоящих кристаллах атомы скорее похожи на сопри­касающиеся друг с другом шарики. Темные и светлые шарики на приведенных рисунках могут, вообще говоря, означать либо разные, либо одинаковые сорта атомов. Так, железо имеет объемноцентрированную кубическую решетку при низких тем­пературах и гранецентрированную кубическую решетку при более высоких температурах. Физические свойства этих двух кристаллических форм совершенно различны.
    Но как возникают такие формы? Представьте, что вы дол­жны как можно плотнее упаковать атомы — шарики. Можно было бы начать со слоя, где шарики уложены в «гексагональной плотной упаковке», как показано на фиг. 30.5, а.
   
    Фиг. 30.5. Устройство гексагональной решетки с плотной упаковкой.
    Затем можно построить второй слой наподобие первого, но сместив его в го­ризонтальном направлении, как показано на фиг. 30.5, б. А потом можно наложить и третий слой. Вот тут — внимание! Третий слой можно наложить двумя разными способами. Если вы начнете класть третий слой, помещая атом в точку А на фиг. 30.5, б, то каждый атом в третьем слое окажется прямо над атомом первого нижнего слоя. Если же начать класть третий слой, поме­щая атом в точку В, то атомы треть­его слоя будут расположены как раз над центрами треугольников, обра­зованных тремя атомами нижнего слоя. Любая другая начальная точка эквивалентна А или В, так что су­ществует только два способа разме­щения третьего слоя.
    Если третий слой имеет атом в точке В, кристаллическая решетка будет гранецентрированной кубической, но видно это под некоторым углом. Забавно, что, начав с шестиугольни­ков, можно прийти к кубической структуре. Но обратите вни­мание, что куб, рассматриваемый под определенным углом, имеет очертания шестиугольника. Например, фиг. 30.6 может изображать либо плоский шестиугольник, либо и куб в пер­спективе!
    Если к фиг. 30.5, б добавляется третий слой, начиная с ато­ма в точке А, то кубической структуры не возникает и у ре­шетки будет только гексагональная симметрия. Ясно, что обе опи­санные нами возможности дают одинаковую плотную упаковку.
    Некоторые металлы (например, серебро и медь) выбирают первую альтернативу — решетка у них гранецентрированная кубическая. Другие же (например, бериллий и магний) пред­почитают вторую возможность и образуют гексагональные кристаллы. Очевидно, появление той или иной решетки не может зависеть только от способа упаков­ки маленьких шариков, но должно еще определяться и другими факторами. В частности, оказывается существенной небольшая угловая зависимость межатомных сил (или в случае металлов от энергии электронного океана).
   
    Фиг. 30.6. Что это шестиугольник или куб?
    Все эти вещи вы несомненно узнаете из курса химии.
    § 5. Симметрии в двух измерениях
    Теперь мне хотелось бы обсудить некоторые свойства кри­сталлов с точки зрения их внутренних симметрии. Основное свойство кристалла состоит в том, что если вы сдвинетесь от одного атома на один период решетки к соответствующему ато­му, то попадете в точно такое же окружение. Это фундамен­тальное утверждение. Но если бы вы сами были атомом, то могли бы заметить другое передвижение, которое привело бы вас в точно такое же окружение, т. е. в другую возможную «симмет­рию». На фиг. 30.7, а показан еще один возможный узор обоев (хотя вы, наверно, такого никогда не видали).
   
    Фиг. 30.7. Узор обоев с высокой симметрией.
    Предположим, что мы сравниваем окру­жения в точках А и В. Вы могли бы сперва подумать, что они одинаковы. Не совсем. Точки С и D экви­валентны А, но окружение В подобно А, только если все рядом обращать как будто в зеркале.
    В этом узоре имеются еще и другие виды «эквивалентных» точек. Так, точки Е и F обладают «одинаковыми» окружениями, за тем исключением, что одно повернуто на 90° по отношению к другому. Узор особенный. Вращение на 90°, проделанное сколько угодно раз вокруг такой вершины, как A, снова дает тот же узор. Кристалл с такой структурой имел бы на поверхнос­ти прямые углы, но внутри он устроен сложнее, чем простой куб.
    Теперь, когда мы описали ряд частных случаев, попытаемся вывести все возможные типы симметрии, какие может иметь кристалл. Прежде всего посмотрим, что получается в плоскости. Плоская решетка может быть определена с помощью двух так называемых основных векторов, которые идут от одной точки решетки к двум ближайшим эквивалентным точкам. Два вектора 1 и 2 суть основные векторы решетки на фиг. 30.1. Два век­тора а и b на фиг. 30.7, а — основные векторы для изображен­ного там узора. Мы могли бы, конечно, с тем же успехом заме­нить а на -а или b на -b. Раз а и b одинаковы по величине и перпендикулярны друг другу, то вращение на 90° переводит а в b и b в а и снова дает ту же решетку.
    Итак, мы видим, что существуют решетки, обладающие «четырехсторонней» симметрией. А раньше мы описали плотную упаковку, основанную на шестиугольнике и обладающую шестисторонней симметрией. Вращение набора кружков на фиг. 30.5, а на угол 60° вокруг центра любого шарика пере­водит рисунок сам в себя.
    Какие виды вращательной симметрии существуют еще? Может ли быть, например, вращательная симметрия пятого или восьмого порядка? Легко понять, что они невозможны. Единственная симметрия, связанная с фигурой, имеющей более четырех сторон, есть симметрия шестого порядка. Прежде всего покажем, что симметрия более чем шестого порядка невозмож­на. Попытаемся вообразить решетку с двумя равными основ­ными векторами, образующими угол менее 60° (фиг. 30.8, а).
   
    Фиг. 30.8. Симметрия вра­щения выше шестого порядка невозможна (а); симметрия вращения пятого порядка невозможна (б).
    Мы должны предположить, что точки В и С эквивалентны А и что а и bнаиболее короткие векторы, проведенные из А до эквивалентных соседей. Но это, безусловно, неверно, потому что расстояние между В и С короче, чем от любого из них до А. Должна существовать соседняя точка D, эквивалентная А, ко­торая ближе к А, чем к В или С. Мы должны были бы выбрать b' в качестве одного из основных векторов. Поэтому угол между основными векторами должен быть равен 60° или еще больше. Октагональная симметрия невозможна.
    А как быть с пятикратной симметрией? Если мы предполо­жим, что основные векторы а и b имеют одинаковую длину и образуют угол 2p/5=72° (фиг. 30.8, б), то должна существовать эквивалентная точка решетки в D под 72° к линии АС. Но век­тор b' от Е к D тогда короче b, и b уже не основной вектор. Пятикратной симметрии быть не может. Единственные воз­можности, не приводящие к подобным трудностям, это q=60, 90 или 120°. Очевидно, допустимы также нуль и 180°. Можно еще так выразить полученный нами результат: рисунок может не меняться при повороте на полный оборот (ничего не изме­няется), полоборота, одну треть, одну четверть или одну ше­стую оборота. И этим исчерпываются все возможные вращатель­ные симметрии на плоскости — всего их пять. Если 8=2p/n, то мы говорим об «n-кратной» симметрии, или симметрии n-го порядка. Мы говорим, что узор, для которого n равно 4 или 6, обладает более «высокой симметрией», чем узор с n, равным 1 или 2.
    Вернемся к фиг. 30.7, а. Мы видим, что узор там обладает четырехкратной вращательной симметрией. На фиг. 30.7, б мы нарисовали другое расположение, которое обладает теми же свойствами симметрии, что и фиг. 30.7, а. Маленькие фигурки, похожие на запятые,— это асимметричные объекты, которые служат для определения симметрии изображения внутри каж­дого квадратика. Заметьте, что запятые в соседних квадратиках перевернуты попеременно, так что элементарная ячейка боль­ше одного квадратика. Если бы запятых не было, рисунок по-прежнему обладал бы четырехкратной симметрией, но эле­ментарная ячейка была бы меньше. Посмотрим внимательно на фиг. 30.7; мы обнаружим, что они обладают еще и другими типами симметрии. Так, отражение относительно каждой пунк­тирной линии RR воспроизводит рисунок без изменений. Но это еще не все. У них есть еще один тип симметрии. Если отразить рисунок относительно линии yy, а затем сдвинуть на один квадратик вправо (или влево), то снова получится пер­воначальный рисунок. Линия у—у называется линией сколь­жения.
    Этим исчерпываются все типы симметрии в пространстве двух измерений. Есть еще одна пространственная операция сим­метрии, которая на плоскости эквивалентна вращению на 180°, однако в трехмерном пространстве она не сводится к этому вра­щению, а есть совсем другая операция. Я говорю об инверсии. Под инверсией мы подразумеваем такую операцию, когда лю­бая точка, отвечающая вектору смещения из начала координат R (например, точка А на фиг. 30.9, б), переносится в точку —R.
   
    Фиг. 30.9. Операция симметрии, называемая инверсией.
    а — рисунок меняется; б — рисунок не меняется при преобразовании R ® -R;
    в — в трех измерениях рисунок не симметричен после операции инверсии;
    г — рисунок симметричен в трех измерениях.
    Инверсия рисунка а на фиг. 30.9 дает новый рисунок, а инверсия рисунка б приводит к такому же рисунку. На дву­мерном узоре (вы можете это видеть) инверсия рисунка б в точ­ке А эквивалентна повороту на 180° вокруг той же самой точки. Предположим, однако, что мы сделали узор на фиг. 30.9, б трехмерным, вообразив на маленьких шестерках и девятках «стрелочки», смотрящие из страницы кверху. В результате ин­версии в трехмерном пространстве все стрелочки перевернутся и направятся вниз, так что узор не воспроизведется. Если мы обозначим острия и хвосты стрелок точками и крестиками, то сможем образовать трехмерный рисунок (фиг. 30.9, в), который несимметричен относительно инверсии, или же мы можем получить рисунок, который такой симметрией обладает (фиг. 30.9, г). Заметьте, что трехмерную инверсию нельзя получить никакой комбинацией вращений.
    Если мы будем характеризовать «симметрию» рисунка (или решетки) разного рода операциями симметрии, которые мы только что описали, то окажется, что в двумерном случае сущест­вуют 17 различных форм узоров. Узор с наинизшей возможной симметрией мы изобразили на фиг. 30.1, а узор с одной из наи­высших симметрии — на фиг. 30.7. Отыщите сами все 17 возможных форм рисунков.
    Удивительно, как мало типов из этих 17 используется при изготовлении обоев и тканей! Всегда видишь одни и те же три или четыре основных типа. В чем здесь дело? Неужели так убо­га фантазия художников или, может быть, многие из возмож­ных типов рисунков не будут радовать глаз?
    § 6. Симметрии в трех измерениях
    До сих пор мы говорили только об узорах в двух измерениях. На самом же деле нас интересуют способы размещения атомов в трех измерениях. Прежде всего очевидно, что трехмерный кристалл имеет три основных вектора. Если же мы поинтересу­емся возможными операциями симметрии в трех измерениях, то обнаружим, что существует 230 возможных типов симметрии! По некоторым соображениям, эти 230 типов можно разделить на семь классов, представленных на фиг. 30.10.

   
    Фиг. 30.10. Семь классов кристаллической решетки.
    Решетка с наи­меньшей симметрией называется триклинной. Ее элементар­ная ячейка представляет собой параллелепипед. Основные век­торы все имеют разную длину и нет ни одной одинаковой пары углов между ними. И никакой вращательной или зеркальной симметрии здесь нет. Однако есть еще одна операция: при ин­версии в узле элементарная ячейка может меняться, а может и не меняться. [Под инверсией в трех измерениях мы снова подра­зумеваем, что пространственное смещение R заменяется на -R, или, другими словами, точка с координатами (х, у, z) переходит в точку с координатами (-x,-y, -z). Поэтому симметрия триклинной решетки может быть только двух типов — с центром инверсии и без него.] Пока мы считали, что все векторы разные и расположены под произвольными углами. Если же все век­торы одинаковы и углы между ними равны, то получается тригональная решетка, изображенная на рисунке. Ячейка такой решетки может иметь добавочную симметрию; она может еще и не меняться при вращении вокруг наибольшей телесной диагонали.
    Если один из основных векторов, скажем с, направлен под прямым уг­лом к двум остальным, то мы получаем моноклинную элементарную ячейку. Здесь возможна новая симметрия — вращение на 180° вокруг с. Гексагональ­ная решетка — это частный случай, когда векторы а и b равны и угол меж­ду ними составляет 60°, так что вра­щение на 60, 120 или 180° вокруг вектора с приводит к той же самой решетке (для определенных внутренних типов симметрии).
    Если все три основных вектора пер­пендикулярны друг другу, но не равны по длине, получается ромбическая ячей­ка. Фигура симметрична относительно вращений на 180° вокруг трех осей. Типы симметрии более высокого поряд­ка возникают у тетрагональной ячей­ки, все углы которой прямые и два основных вектора равны. Наконец, имеется еще кубическая ячейка, самая симметричная из всех.
    Основной смысл всего этого разго­вора о типах симметрии состоит в том, что внутренняя симметрия кристалла проявляется (иногда весьма тонким образом) в макроскопических физичес­ких свойствах кристалла. В гл. 31 мы увидим, например, что электрическая поляризуемость кристалла, вообще го­воря, представляет собой тензор. Если описывать тензор в терминах эллипсои­да поляризуемости, то мы должны дока­зать, что некоторые типы симметрии кристалла проявятся в этом эллипсоиде. Так, кубический кристалл симметричен по отношению к вращению на 90° вокруг любого из трех взаим­но перпендикулярных направлений. Единственный эллипсоид с таким свойством,—очевидно, сфера. Кубический кристалл должен быть изотропным диэлектриком.
    С другой стороны, тетрагональный кристалл обладает вра­щательной симметрией четвертого порядка. Две главные оси его эллипсоида должны быть равны, а третья должна быть па­раллельна оси кристалла. Аналогично, поскольку ромбический кристалл обладает вращательной симметрией второго порядка относительно трех перпендикулярных осей, его оси должны совпадать с осями эллипсоида поляризуемости. Точно так же одна из осей моноклинного кристалла должна быть параллельна одной из главных осей эллипсоида, хотя о других осях мы ни­чего сказать не можем. Триклинный кристалл не обладает вра­щательной симметрией, поэтому его эллипсоид может иметь любую ориентацию.
    Как видите, мы можем с пользой провести время, придумы­вая всевозможные типы симметрии и связывая их со всевозмож­ными физическими тензорами. Мы рассмотрели только тензор поляризуемости, здесь дело было простое, а для других тен­зоров, например для тензора упругости, рассуждать будет труднее. Существует раздел математики, называемый «теорией групп», который занимается такими вещами, но обычно можно сообразить все, что нужно, опираясь лишь на здравый смысл.
    § 7. Прочность металлов
    Мы говорили, что металлы обычно имеют простую кубиче­скую кристаллическую структуру; сейчас мы обсудим их меха­нические свойства, которые зависят от этой структуры. Вообще говоря, металлы очень «мягкие», потому что один слой кристал­ла легко заставить скользить над другим. Вы, наверное, поду­маете: «Ну, это дико — металлы ведь твердые». Нет, монокри­сталл металла легко деформируется.
    Рассмотрим два слоя кристалла, подвергающихся действию силы сдвига (фиг. 30.11, а).
   
    Фиг. 30.11. Сдвиг плоскостей кристалла.
    Вероятно, вы сперва решите, что весь слой будет сопротивляться сдвигу, пока сила не станет до­статочно велика, чтобы сдвинуть весь слой «над горбами» на одно место влево. Хотя скольжение по некоторой плоскости возможно, все происходит совсем не так. (Иначе, согласно вы­числениям, получилось бы, что металл гораздо прочнее, чем он есть на самом деле.) В действительности же дело больше по­ходит на то, что атомы перескакивают поочередно: сначала прыгает первый атом слева, затем следующий и т. д., как по­казано на фиг. 30.11, б. В результате пустое место между дву­мя атомами быстро путешествует направо и весь второй ряд сдвигается на одно межатомное расстояние. Скольжение происходит таким образом, что на перекатывание атома через горб поодиночке требуется гораздо меньше энергии, чем на подня­тие всего ряда в целом. Как только сила возрастет до значения, достаточного для начала процесса, весь процесс протекает очень быстро.
    Оказывается, что в реальном кристалле скольжение возни­кает поочередно: сначала в одной плоскости, затем заканчи­вается там и начинается в другом месте. Почему оно начинается и почему заканчивается — совершенно непонятно. В самом деле, очень странно, что последовательные области скольжения ча­сто расположены довольно редко. На фиг. 30.12 представлена фотография очень маленького и тонкого кристалла меди, кото­рый был растянут.
   
    Фиг. 30.12. Маленький кристалл меди после растяжения.
    Вы можете заметить разные плоскости, в ко­торых возникало скольжение.
    Неожиданное соскальзывание отдельных кристаллических плоскостей легко заметить, если взять кусок оловянной проволоки, в которой содержатся большие крис­таллы, и растягивать ее, держа близко к уху. Вы ясно различите звуки «тик-тик», когда плос­кости защелкиваются в новых положениях, одна за другой.
    Проблема «нехватки» атома в одном из ря­дов сложнее, чем может показаться при рассма­тривании фиг. 30.11.
    Когда слоев больше, си­туация скорее походит на то, что изображено на фиг. 30.13.
   
    Фиг. 30.13. Дислокация в кристалле.
    Подобный дефект в кристалле называют дислокацией. Считается, что такие дислокации возникают при образовании кри­сталла или же в результате царапины или трещины на его поверхности. Раз возникнув, они довольно свободно могут проходить сквозь кристалл. Большие на­рушения возникают из-за движения множества таких дислокаций.
    Дислокации могут свободно передвигаться. Это значит, что для них требуется немного дополнительной энергии, если только весь остальной кристалл имеет совершенную решетку. Но они могут и «застыть», встретив какой-нибудь другой дефект в кристалле. Если для прохождения дефекта требуется много энергии, они остановятся. Это и есть тот механизм, который сообщает прочность несовершенным кристаллам металла. Кри­сталлы чистого железа совсем мягкие, но небольшая концент­рация атомов примесей может вызвать достаточное количество дефектов, чтобы противостоять дислокациям. Как вы знаете, сталь, состоящая в основном из железа, очень тверда. Чтобы получить сталь, при плавке к железу примешивают немного углерода; при быстром охлаждении расплавленной массы угле­род выделяется в виде маленьких зерен, образуя в решетке множество микроскопических нарушений. Дислокации уже не могут свободно передвигаться, и металл становится твердым.
    Чистая медь очень мягкая, но ее можно «закалить» накле­пом. Это делается отбиванием или сгибанием ее в одну и другую стороны. В таком случае образуется много различных дисло­каций, которые взаимодействуют между собой и ограничивают подвижность друг друга. Быть может, вы видели фокус, когда берут кусочек «мягкой» меди и легко обвивают чье-нибудь запястье в виде браслета. В тот же момент медь становится закаленной и разогнуть ее становится очень трудно! «Закаленный» металл типа меди можно снова сделать мягким с помощью от­жига при высокой температуре. Тепловое движение атомов «размораживает» дислокации и вновь создает отдельные боль­шие кристаллы. О дислокациях можно рассказывать очень много. Так, до сих пор мы описывали только так называемые «дислокации скольжения» (краевые дислокации). Существует еще множество других видов, в частности винтовая дислокация, изображенная на фиг. 30.14.
   
    Фиг. 30.14. Винтовая дислокация.
    Такие дислокации часто играют важную роль в росте кристаллов.
    § 8. Дислокации и рост кристаллов
    Одну из величайших загадок природы долгое время пред­ставлял процесс роста кристаллов. Мы уже описывали, как атом, многократно примериваясь, может определить, где ему лучше — в кристалле или снаружи. Но отсюда следует, что каждый атом должен найти положение с наименьшей энергией. Однако атом, попавший на новую поверхность, связан только одной-двумя связями с нижними атомами, и его энергия при этом не равна энергии того атома, который попал в угол, где он окружен атомами с трех сторон. Вообразим растущий кри­сталл как набор из кубиков (фиг. 30.15).
   
    Фиг. 30.15. Схематическое представление роста кристалла.
    Если мы поставим новый кубик, скажем, в положение А, он будет иметь только одного из тех шести соседей, какими он в конце концов будет окружен. А раз не хватает стольких связей, то и энергия его не будет очень низкой. Более выгодно положение В, где кри­сталл уже имеет половину своей доли связей. И действительно, кристаллы растут, присоединяя новые атомы к участкам типа В.
    Но что произойдет, когда данный ряд завершится? Чтобы начать новый ряд, атом должен осесть, имея связь с двух сторон, а это опять же маловероятно. Даже если он осядет, что прои­зойдет, когда весь слой будет завершен? Как мог бы начаться новый слой? Один из возможных ответов — кристалл предпочи­тает расти по дислокации, например по винтовой дислокации, вроде той, что показана на фиг. 30.14. По мере прибавления кубиков к этому кристаллу всегда остается место, где можно получить три связи. Следовательно, кристалл предпочитает расти с встроенной внутрь дислокацией. Иллюстрацию такого спирального роста представляет собой фотография монокри­сталла парафина (фиг. 30.16).
   
    Фиг. 30.16. Кристалл парафина, выросший вокруг винтовой дислокации.
    § 9. Модель кристалла по Брэггу и Наю
    Мы, разумеется, не можем увидеть, что происходит с отдель­ными атомами в кристалле. Как вы теперь понимаете, существует еще множество сложных явлений, которые трудно описать ко­личественно. Лоуренс Брэгг и Дж. Най придумали модель ме­таллического кристалла, которая удивительным образом моде­лирует множество явлений, возникающих, по-видимому, в реаль­ном металле. Лучше всего прочесть эту работу самим; в ней описан и сам метод, и полученные с его помощью результаты [статья была напечатана в Proceedings of the Royal Society of London, 190, 474 (1947)] .

    * В сокращенном виде она помещена в конце этого выпуска, — Прим. ред.

    * Литература: Ch. Кittel, Introduction to Solid State Physics, 2nd ed., New York, 1956. (Имеется перевод: Ч.Киттель, Введение в физику твердого тела, Физматгиз, М., 1962.)

    Глава 31
    ТЕНЗОРЫ
    §1. Тензор поляризуемости
    §2. Преобразование компонент тензора
    §3. Эллипсоид энергии
    §4.Другие тензоры; тензор инерции
    §5. Векторное произведение
    §6. Тензор напряжений
    §7. Тензоры высших рангов
    §8. Четырехмерный тензор электро­магнитного импульса
    Повторить: гл. 11 (вып. 1)
    «Векторы»; гл. 20 (вып. 2)
    «Вращение в пространстве»
    § 1. Тензор поляризуемости
    У физиков есть привычка брать простейший пример какого-то явления и называть его «фи­зикой», а примеры посложнее отдавать на рас­терзание других наук, скажем прикладной ма­тематики, электротехники, химии или кристал­лографии. Даже физика твердого тела для них только «полуфизика», ибо ее волнует слишком много специальных вопросов. По этой-то при­чине мы в наших лекциях откажемся от множе­ства интересных вещей. Например, одно из важнейших свойств кристаллов и вообще боль­шинства веществ — это то, что их электрическая поляризуемость различна в разных направле­ниях. Если вы в каком-либо направлении приложите электрическое поле, то атомные заряды слегка сдвинутся и возникнет дипольный момент; величина же этого момента зави­сит очень сильно от направления приложенного поля. А это, конечно, усложнение. Чтобы об­легчить себе жизнь, физики начинают разговор со специального случая, когда поляризуемость во всех направлениях одинакова. А другие случаи мы предоставляем другим наукам. По­этому для наших дальнейших рассмотрении нам совсем не понадобится то, о чем мы соби­раемся говорить в этой главе.
    Математика тензоров особенно полезна для описания свойств веществ, которые изменяются с направлением, хотя это лишь один из приме­ров ее использования. Поскольку большин­ство из вас не собираются стать физиками, а намерены заниматься реальным миром, где зависимость от направления весьма сильная, то рано или поздно, но вам понадобится исполь­зовать тензор. Вот, чтобы у вас не было здесь пробела, я и собираюсь рассказать вам про тензоры, хотя и не очень подробно. Я хочу, чтобы ваше понимание физики было как можно более полным. Электродинамика, например, у нас вполне законченный курс; она столь же полна, как и любой курс электричества и магнетизма, даже институтский. А вот механика у нас не закончена, ибо, когда мы ее изучали, вы еще не были столь тверды в математике и мы не могли обсуждать такие разделы, как принцип наименьшего действия, лагран­жианы, гамильтонианы и т. п., которые представляют наиболее элегантный способ описания механики. Однако полный свод законов механики, за исключением теории относительности, у нас все же есть. В той же степени, как электричество и магне­тизм, у нас закончены многие разделы. Но вот квантовую ме­ханику мы так и не закончим; впрочем, нужно что-то оставить и на будущее! И все же, что такое тензор, вам все-таки следует знать уже сейчас.
    В гл. 30 мы подчеркивали, что свойства кристаллического вещества в разных направлениях различны — мы говорим, что оно анизотропно. Изменение индуцированного дипольного мо­мента с изменением направления приложенного электрического поля — это только один пример, но именно его мы и возьмем в качестве примера тензора. Будем считать, что для заданного направления электрического поля индуцированный дипольный момент единицы объема Р пропорционален напряженности при­кладываемого поля Е. (Для многих веществ при не слишком больших Е это очень хорошее приближение.) Пусть константа пропорциональности будет α. Теперь мы хотим рассмотреть вещества, у которых а зависит от направления приложенного поля, например известный вам кристалл турмалина, дающий удвоенное изображение, когда вы смотрите через него.
    Предположим, мы обнаружили, что для некоторого выбран­ного кристалла электрическое поле Е1; направленное по оси х, дает поляризацию Р1, направленную по той же оси, а одина­ковое с ним по величине электрическое поле Е2, направленное по оси у, приводит к какой-то другой поляризации Р2, тоже нап­равленной по оси у. А что получится, если электрическое поле приложить под углом 45°? Ну, поскольку оно будет просто суперпозицией двух полей, направленных вдоль осей х и y, то поляризация Р равна сумме векторов P1 и Р2, как это пока­зано на фиг. 31.1, а.
   
    Фиг. 31.1. Сложение векторов поляризации в анизотропном кристалле.
    Поляризация уже не параллельна направ­лению электрического поля. Нетрудно понять, отчего так про­исходит. В кристалле есть заряды, которые легко сдвинуть вверх и вниз, но которые очень туго сдвигаются в стороны. Если же сила приложена под углом 45°, то эти заря­ды более охотно движутся вверх, чем в сторону. В результате такой асимметрии внутренних упругих сил перемещение идет не по направлению внешней силы. Разумеется, угол 45° ничем не выде­лен. То, что индуцированная поляри­зация не направлена по электрическо­му полю, справедливо и в общем случае. Перед этим нам просто «посчастливи­лось» выбрать такие оси х и у, для которых поляризация Р была направлена по полю Е. Если бы кристалл был повернут по отношению к осям координат, то электрическое поле Е2, направленное по оси y, вызвало бы поляризацию как по оси у, так и по оси х. Подобным же образом поляризация Р, вызван­ная полем, направленным вдоль оси х, тоже имела бы как х-, так и y-компоненты. Так что вместо фиг. 31.1, а мы получили бы нечто похожее на фиг. 31.1,6. Но несмотря на все это ус­ложнение, величина поляризации Р для любого поля Е по-преж­нему пропорциональна его величине.
    Рассмотрим теперь общий случай произвольной ориентации кристалла по отношению к осям координат. Электрическое поле, направленное по оси х, дает поляризацию Р с компонентами по всем трем осям, поэтому мы можем написать
    Рx =axxEx, Ру=aухЕх, Рz=azxЕx. (31.1)
    Этим я хочу сказать лишь, что электрическое поле, направ­ленное по оси х, создает поляризацию не только в этом нап­равлении, оно приводит к трем компонентам поляризации Рх, Рy и Pz, каждая из которых пропорциональна Ех. Коэффициен­ты пропорциональности мы назвали aхх, aух и azx (первый зна­чок говорит, о какой компоненте идет речь, а второй относится к направлению электрического поля).
    Аналогично, для поля, направленного по оси у, мы можем написать
    Рх=aхуЕy, Ру=aууЕу, Рz=aгуЕу, (31.2)
    а для поля в z-направлении
    Px=axzEz, Py=ayzEz Pz=azzEz. (31,3)
    Дальше мы говорим, что поляризация линейно зависит от поля; поэтому если у нас есть электрическое поле Е с компонентами х и у, то x-компонента поляризации Р будет суммой двух Рх, определенных уравнениями (31.1) и (31.2), ну а если Е имеет составляющие по всем трем направлениям х, у и z, то состав­ляющие поляризации Р должны быть суммой соответствующих слагаемых в уравнениях (31.1), (31.2) и (31.3). Другими словами, Р записывается в виде
   
    Диэлектрические свойства кристалла, таким образом, пол­ностью описываются девятью величинами (axx,, axy,,axz,ayz , ...), которые можно записать в виде символа aij. (Индексы i и j заменяют одну из трех букв: х, у или z.) Произвольное электри­ческое поле Е можно разложить на составляющие Еx, Еy и Еz. Зная их, можно воспользоваться коэффициентами aij и найти Рх, Рy и Pz, которые в совокупности дают полную поляризацию Р. Набор девяти коэффициентов aij называется тензором — в данном примере тензором поляризуемости. Точно так же как три величины х, Еу, Еz) «образуют вектор Е», и мы говорим, что девять величин (aхх, aху, ...) «образуют тензор aij».
    § 2. Преобразование компонент тензора
    Вы знаете, что при замене старых осей координат новыми х', у' и z' компоненты вектора Ех', Еу', Ег' тоже оказываются другими. То же самое происходит и с компонентами Р, так что для разных систем координат коэффициенты aij оказываются различными. Однако вполне можно выяснить, как должны изме­няться а при надлежащем изменении компонент Е и Р, ибо, если мы описываем то же самое электрическое поле, но в но­вой системе координат, мы должны получить ту же самую по­ляризацию Р. Для любой новой системы координат Px' будет линейной комбинацией Рх, Рy' , и Рz':
    Рx=аРх+bРу+сРz,
    и аналогично для других компонент. Если вместо Рх, Рy и Рz подставить их выражения через Е согласно (31.4), то получится
   
    Теперь напишите, как выражается Ех, Еy и Ez через Еx' , Еy' и Еz' , например,
    Ex = a'Ex'+b'Ey'+c'Ez' ,
    где числа а', b' и с' связаны с числами а, b и c, но не равны им. Таким образом, у вас получилось выражение Рх' через компо­ненты Ех', Еy' и Ez' , т. е. получились новые aij. Никаких хит­ростей здесь нет, хотя все это достаточно запутано.
    Когда мы говорили о преобразовании осей, то считали, что положение самого кристалла фиксировано в пространстве. Если же вместе с осями поворачивать и кристалл, то a не изме­няются. И обратно, если по отношению к осям изменять ориен­тацию кристалла, то получится новый набор коэффициентов а. Но если они известны для какой-то одной ориентации кристал­ла, то с помощью только что описанного преобразования их можно найти и для любой другой ориентации. Иначе говоря, диэлектрические свойства кристалла полностью описываются заданием компонент тензора поляризуемости aij. в любой про­извольно выбранной системе координат. Точно так же как век­тор скорости v = (vx, vy , vz) можно связать с частицей, зная, что три его компоненты при замене осей координат будут изменять­ся некоторым определенным образом, тензор поляризуемости aij, девять компонент которого при изменении системы осей координат преобразуются вполне определенным образом, мож­но связать с кристаллом.
    Связь между Р и Е в уравнении (31.4) можно записать в бо­лее компактном виде:
   
    где под значком i понимается какая-то из трех букв х, у или z, а суммирование ведется по j=x, у и z. Для работы с тензорами было придумано много специальных обозначений, но каждое из них удобно для ограниченного класса проблем. Одно из та­ких общих соглашений состоит в том, что можно не писать знака суммы (S) в уравнении (31.5), понимая при этом, что когда один и тот же индекс встречается дважды (в нашем случае j), то нужно просуммировать по всем значениям этого индекса. Однако, поскольку работать с тензорами нам придется немного, давайте не будем осложнять себе жизнь введением каких-то специальных обозначений или соглашений.
    § 3. Эллипсоид энергии
    Потренируемся теперь в обращении с тензорами. Рассмот­рим такой интересный вопрос: какая энергия требуется для поляризации кристалла (в дополнение к энергии электрического поля, которая, как известно, равна e0Е2/2 на единицу объема)? Представьте на минуту атомные заряды, которые должны быть перемещены. Работа, требуемая для перемещения одного такого заряда на расстояние dx, равна qExdx, а если таких зарядов в единице объема содержится N штук, то для перемещения их требуется работа qExNdx. Но qNdx равно изменению дипольного момента единицы объема dPx. Так что работа, затраченная на единицу объема, равна
    ExdPx.
    Складывая теперь работы всех трех компонент, найдем, ка­кой должна быть работа в единице объема:
    E·dP.
    Но поскольку величина Р пропорциональна Е, то работа, за­траченная на поляризацию единицы объема от 0 до Р, равна интегралу от E·dP. Обозначая ее через ир, можно написать
   
    Теперь можно воспользоваться уравнением (31.5) и выра­зить Р через E. В результате получим
   
    Плотность энергии ирвеличина, не зависящая от выбора осей, т. е. скаляр. Таким образом, тензор обладает тем свойст­вом, что, будучи просуммирован по одному индексу (с векто­ром), он дает новый вектор, а будучи просуммирован по обоим индексам (с двумя векторами), дает скаляр.
    Тензор aij на самом деле нужно называть «тензором вто­рого ранга», ибо у него два индекса. В этом смысле вектор, у которого всего один индекс, можно назвать «тензором первого ранга», а скаляр, у которого вообще нет индексов,— «тензором нулевого ранга». Итак, выходит, что электрическое поле Е будет тензором первого ранга, а плотность энергии upтензором нулевого ранга. Эту идею можно распространить на тензоры с тремя и более индексами и определить тензоры, ранг которых выше двух.
    Индексы нашего тензора поляризуемости могут принимать три различных значения, т. е. это трехмерный тензор. Матема­тики рассматривают также тензоры размерности четыре, пять и больше. Кстати, четырехмерный тензор нам уже встречался при релятивистском описании электромагнитного поля (см. гл. 26, вып. 6) — это Fmv .
    Тензор поляризуемости aij обладает одним интересным свойством: он симметричен, т. е. axy=ayx и т. п. для любой пары индексов. (Это свойство отражает физические качества ре­ального кристалла, и вовсе не обязательно у любого тензора.) Вы можете самостоятельно доказать это, подсчитав изменения энергии кристалла по следующей схеме:
    1) включите электрическое поле в направления оси х;
    2) включите поле в направлении оси у;
    3) выключите x-поле;
    4) выключите y-поле.
    Теперь кристалл вернулся к прежнему положению и полная работа, затраченная на поляризацию, должна быть нулем. Но для этого, как вы можете убедиться, axy должно быть равно а. Однако те же рассуждения можно провести и для axz и т. д. Таким образом, тензор поляризуемости симметричен.
    Это означает также, что тензор поляризуемости можно найти простым измерением энергии, необходимой для поляризации кристалла в различных направлениях. Предположим, мы сна­чала взяли электрическое поле Е с компонентами х и у; тогда, согласно уравнению (31.7),
   
    Если бы у нас была только одна компонента Ех, мы могли бы определить aхх, а с одной компонентой Еy можно определить ayy . Включив обе компоненты Ех и Еy , мы из-за присутствия члена (aху+aух) получим добавочную энергию, ну а поскольку axy и ayx равны, то этот член превращается в 2axy и мо­жет быть вычислен из добавочной энергии.
    Выражение для энергии (31.8) имеет очень красивую геомет­рическую интерпретацию. Предположим, что нас интересует, какие поля Ех и Еy отвечают данной плотности энергии, скажем u0. Возникает чисто математическая задача решения уравне­ния
   
    Это уравнение второй степени, так что, если мы отложим по осям величины Ех и Еy , решением этого уравнения будут все точки эллипса (фиг. 31.2).
   
    Фиг. 31.2 Конец любого вектора E=(Ex, ev) , лежащего на этой кривой, дает одну и ту же анер­гию поляризации.
    (Это должен быть именно эллипс, а не парабола и не гипербола — ведь энергия поля всегда положительна и конечна.) А само Е с компонентами Ех и Еy представ­ляет вектор, идущий из начала координат до точки на эллипсе. Такой «энергетический эллипс» — хороший способ «увидеть» тензор поляризуемости.
    Если теперь пустить в дело все три компоненты, то любой вектор Е, необходимый для создания единичной плотности энергии, задается точками, расположенными на эллипсоиде, подобно изображенному на фиг. 31.3. Форма этого эллипсоида постоянной энергии однозначно характеризует тензор поляри­зуемости.
    Заметьте теперь, что эллипсоид имеет очень интересное свойство — его всегда можно описать простым заданием на­правления трех «главных осей» и диаметров эллипсоида по этим осям. Такими «главными осями» являются направления наи­меньшего и наибольшего диаметра и направление, перпендику­лярное к ним. На фиг. 31.3 они обозначены буквами а, b и с.
   
    Фиг. 31.3. Эллипсоид анергии для тензора поляризуемости.
    По отношению к этим осям уравнение эллипсоида имеет осо­бенно простую форму:
   
    Итак, по отношению к главным осям у тензора поляризуе­мости останутся только три ненулевые компоненты aаа, abb и aсс. Другими словами, сколь бы ни был сложен кристалл, всегда можно выбрать оси так (они не обязательно будут осями самого кристалла), что у тензора поляризуемости останется только три компоненты. Уравнение (31.4) для таких осей ста­новится особенно простым:
    Ра =aааЕа, Рb =abbEb, Рс =aссЕс. (31.9)
    Иначе говоря, электрическое поле, направленное по любой одной из главных осей, дает поляризацию, направленную по той же оси, но, разумеется, для различных осей коэффициенты будут разными.
    Тензор часто записывается в виде таблицы из девяти коэф­фициентов, взятых в скобки:
   
    Для главных же осей а, b и с в таблице остаются только диаго­нальные члены, поэтому мы говорим, что тензор становится «диагональным», т. е.
   
    Самое важное здесь то, что к такой форме подходящим выбором осей координат можно привести любой тензор поляризуемости (фактически любой симметричный тензор второго ранга какого угодно числа измерений).
    Если все три элемента тензора поляризуемости в диагональ­ной форме равны друг другу, т. е. если
   
    то эллипсоид энергии превращается в сферу, поляризуемость во всех направлениях становится одинаковой, а материал изот­ропным. В тензорных обозначениях
   
    где.dij—единичный тензор:
   
    что, разумеется, означает
   
    Тензор dij часто называют также «символом Кронекера». Для забавы вы можете доказать, что тензор (31.14) после замены одной прямоугольной системы координат на другую будет иметь в точности ту же самую форму. Тензор поляризуемости типа (31.13) дает
   
    т. е. получается наш старый результат для изотропного диэлек­трика:
    Р=aЕ.
    Форму и ориентацию эллипсоида поляризуемости иногда можно связать со свойствами симметрии кристалла. В гл. 30 мы уже говорили, что трехмерная решетка имеет 230 различных возможных внутренних симметрии и что для многих целей их удобно разбить на 7 классов в соответствии с формой элемен­тарной ячейки. Эллипсоид поляризуемости должен отражать геометрию внутренней симметрии кристалла. Например, триклинный кристалл имеет самую низкую симметрию; у него все три оси эллипсоида разные и направления их, вообще говоря, не совпадают с направлением осей кристалла. Более симмет­ричный моноклинный кристалл обладает той особенностью, что его свойства не меняются при повороте кристалла на 180° от­носительно одной оси, поэтому тензор поляризуемости при таком повороте должен остаться тем же самым. Отсюда следует, что эллипсоид поляризуемости при повороте на 180° должен перехо­дить сам в себя. Но такое может случиться только, когда одна из осей эллипсоида совпадет с направлением оси симметрии кристалла. В других же отношениях ориентация и размеры эллипсоида могут быть какими угодно.
    Оси эллипсоида ромбического кристалла должны совпадать с кристаллическими осями, так как вращение такого кристалла на 180° вокруг любой оси повторяет ту же кристаллическую решетку. Если же взять тетрагональный кристалл, то эллип­соид тоже должен повторять его симметрию, т. е. два из его диаметров должны быть равны между собой. Наконец, для ку­бического кристалла равными должны быть все три диаметра эллипсоида — он превращается в сферу и поляризуемость кристалла одинакова во всех направлениях.
    Существует очень серьезная игра, состоящая в выяснении всех возможных свойств тензоров для всех возможных симмет­рии кристалла. Она мудрено называется «теоретико-групповым анализом». Однако для простых случаев тензора поляризуемо­сти увидеть, какова должна быть эта связь, относительно легко.
    § 4. Другие тензоры; тензор инерции
    В физике есть еще немало других примеров тензоров. В ме­талле, например, или каком-либо другом проводнике зачастую оказывается, что плотность тока j приблизительно пропорцио­нальна электрическому полю Е, причем константа пропорцио­нальности называется проводимостью s
    j=sЕ.
    Однако для кристалла соотношение между j и Е более сложно, проводимость в различных направлениях не одинакова. Она становится тензором, поэтому мы пишем
   
    Другим примером физического тензора является момент инерции. В гл. 18 (вып. 2) мы видели, что момент количества движения L твердого тела, вращающегося относительно фикси­рованной оси, пропорционален угловой скорости w, и коэффи­циент пропорциональности I мы назвали моментом инерции:
    L = Iw.
    Момент инерции тела произвольной формы зависит от его ориен­тации относительно оси вращения. Моменты инерции прямо­угольного бруска, например, относительно каждой из трех ортогональных осей будут разными. Но угловая скорость со и момент количества движения L — оба векторы. Для враще­ния относительно одной из осей симметрии они параллельны. Но если моменты инерции относительно каждой из трех главных осей различны, то направления to и L, вообще говоря, не сов­падают (фиг. 31.4).
   
    Фиг. 31.4. Момент количества движения L твер­дого предмета, вообще говоря, не параллелен векто­ру угловой скорости w.
    Они связаны точно таким же образом, как Е и Р, т. е. мы должны писать:
   
    Девять коэффициентов Iij называют тензором инерции. По ана­логии с поляризацией кинетическая энергия для любого мо­мента количества движения должна быть некоторой квадратич­ной формой компонент wx, wy и wz:
   
    Мы можем снова воспользоваться этим выражением для опре­деления эллипсоида инерции. Кроме того, снова можно восполь­зоваться энергетическими соображениями и показать, что этот тензор симметричен, т. е. Iij=Iji.
    Тензор инерции твердого тела можно написать, если извест­на форма тела. Нам нужно только выписать полную кинетиче­скую энергию всех частиц тела. Частица с массой m и скоростью v обладает кинетической энергией 1/2mv2, а полная кинетиче­ская энергия равна просто сумме
    S1/2mv2
    по всем частицам тела. Но скорость v каждой частицы связана с угловой скоростью wтвердого тела. Предположим, что тело вращается относительно центра масс, который мы будем счи­тать покоящимся. Если при этом r — положение частицы отно­сительно центра масс, то ее скорость v задается выражением wXr. Поэтому полная кинетическая энергия равна
    к. э.=S1/2m(wX г)2. (31.18)
    Единственное, что нужно теперь сделать,— это переписать wXr через компоненты wх, wy , wz и координаты х, у, z, а за­тем сравнить результат с уравнением (31.17); приравнивая коэффициенты, найдем Iij. Проделывая всю эту алгебру, мы пишем:
   
    Умножая это уравнение на m/2, суммируя по всем частицам и сравнивая с уравнением (31.17), мы видим, что Ixx, напри­мер, равно
   
    Это и есть та формула для момента инерции тела относительно оси х, которую мы получали уже раньше (гл. 19, вып. 2).
    Ну а поскольку r2 =x2+y2+z2, то эту же формулу можно написать в виде
    Ixx=Sm(r2-x2). Выписав остальные члены тензора инерции, получим
   
    Если хотите, его можно записать в «тензорных обозначе­ниях»:
   
    где через ri обозначены компоненты (х, у, z) вектора положе­ния частицы, а 2 означает суммирование по всем частицам. Таким образом, момент инерции есть тензор второго ранга, элементы которого определяются свойствами тела и который связывает момент количества движения L с угловой ско­ростью w:
   
    Для любого тела независимо от его формы можно найти эл­липсоид энергии, а следовательно, и три главные оси. Относи­тельно этих осей тензор будет диагональным, так что для лю­бого объекта всегда есть три ортогональные оси, для которых момент количества движения и угловая скорость параллельны друг другу. Они называются главными осями инерции.
    § 5. Векторное произведение
    Сами того не подозревая, вы пользуетесь тензором второго ранга уже начиная с гл. 20 (вып. 2). В самом деле, мы опреде­лили там «момент силы, действующий в плоскости», например txy, следующим образом:
    txy=xFy-yFx.
    Обобщая это определение на три измерения, можно написать
    tij=riFj-rjFi. (31.22)
    Как видите, величина tij — это тензор второго ранга. Один из способов убедиться в этом — свернуть tij с каким-то век­тором, скажем с единичным вектором е, т. е. составить
   
    Если эта величина окажется вектором, то tij должен преобра­зовываться как тензор — это просто наше определение тензора. Подставляя выражение для tij, получаем
   
    Поскольку скалярные произведения, естественно, являются скалярами, то оба слагаемых в правой части — векторы, как и их разность. Так что tij-— действительно тензор.
    Однако tij принадлежит к особому сорту тензоров, он антисимметричен, т. е.
    tij=-tji.
    Поэтому у такого тензора есть только три разные и неравные нулю компоненты: txy, tyz и tzz. В гл. 20 (вып. 2) нам удалось показать, что эти три члена почти «по счастливой случайности» преобразуются подобно трем компонентам вектора; поэтому мы могли тогда определить вектор
    t=(tx,. ty, tz) = (tyz, tzx, txy).
    Я сказал «по случайности» потому, что это происходит только в трехмерном пространстве. Например, для четырех измерений антисимметричный тензор второго ранга имеет шесть различных ненулевых членов, и его, разумеется, нельзя заменить векто­ром, у которого компонент только четыре.
    Точно так же как аксиальный вектор t==rXF является тен­зором, по тем же соображениям тензором будет и любое век­торное произведение двух полярных векторов. К счастью, они тоже представимы в виде вектора (точнее, псевдовектора), что немного облегчает нам всю математику.
    Вообще говоря, для любых двух векторов а и b девять ве­личин aibj образуют тензор (хотя для физических целей он не всегда может быть полезен). Таким образом, для вектора по­ложения r величины rirj являются тензором, а поскольку dij. тоже тензор, то мы видим, что правая часть (31.20) действитель­но является тензором. Подобным же образом тензором будет и (31.22), так как оба члена в правой части — тензоры.
    § 6. Тензор напряжений
    Встречавшиеся до сих пор симметричные тензоры возникали как коэффициенты, связывающие один вектор с другим. Сей­час я познакомлю вас с тензором, имеющим совершенно другой физический смысл,— это тензор напряжений. Предположим, что на твердое тело действуют различные внешние силы. Мы говорим, что внутри тела возникают различные «напряжения», имея при этом в виду внутренние силы между смежными частями материала. Мы уже гово­рили немного о подобных на­пряжениях в двумерном случае, когда рассматривали поверхностное натяжение напряженной диафрагмы (см. гл. 12, § 3, вып. 5). А теперь вы увидите, что внутренние силы в материале трехмерного тела записываются в виде тензора.
    Рассмотрим тело из какого-то упругого материала, например брусок из желе. Если мы разрежем этот брусок, то материал на каждой стороне разреза будет, вообще говоря, претерпевать перемещение под действием внутренних сил. До того как был сделан разрез, между двумя этими частями должны были дейст­вовать силы, которые удерживали обе части в едином куске; мы можем выразить напряжение через эти силы. Представьте себе, что мы смотрим на воображаемую плоскость, перпендику­лярную оси х, подобную плоскости s на фиг. 31.5, и интересуем­ся силами, действующими на маленькой площадке Dy/Dz, рас­положенной в этой плоскости.
   
    Фиг. 31.5. Материал, находящийся слева от плоскости s на площади Dy/Dz, действует на материал, нахо­дящийся справа, с силой DF1.
    Материал, находящийся слева от площадки, действует на материал с правой стороны с силой DF1 (фиг. 31.5, б). Есть, конечно, и обратная реакция, т.е. на материал слева от поверхности действует сила —DF1. Если площадка достаточно мала, то мы ожидаем, что сила DF1 про­порциональна площади Dy/Dz.
    Вы уже знакомы с одним видом напряжений — статическим давлением жидкости. Там сила была равна давлению, умно­женному на площадь, и направлена под прямым углом к элементу поверхности. Для твердого тела, а также движущей­ся вязкой жидкости сила не обязательно перпендикулярна по­верхности: помимо давления (положительного или отрицатель­ного), появляется еще и сдвигающая сила. (Под «сдвигающей» силой мы подразумеваем тангенциальные компоненты сил, действующих на поверхности.) Для этого нужно учитывать все три компоненты силы. Заметьте еще, что если раз­рез мы сделаем по плоскости с какой-то другой ориента­цией, то действующие на ней силы тоже будут другими. Полное описание внутренних напряжений требует применения тензоров.
    Определим тензор нап­ряжений следующим образом. Вообразите сначала разрез, перпендикулярный оси х, и разложите силу DF1, действующую на разрезе, на ее компо­ненты: DFx1, DFy1, DFz1 (фиг. 31.6).
   
    Фиг. 31.6. Сила DF1, дейст­вующая на элементе площади DyDz, перпендикулярной оси х, разлагается на три компонен­ты: DFx1, DFу1 и DFz1.
    Отношение этих сил к площади Dy/Dz мы назовем Sxx, Syx и Szx. Например,
    Syx=DFу1/DyDz
    Первый индекс у относится к направлению компоненты силы, а второй х — к направлению нормали к плоскости. Если угод­но, площадь DyDz можно записать как Dах, имея в виду элемент площади, перпендикулярный оси х, т. е.
    Syx=DFу1/Dах
    А теперь представьте себе разрез, перпендикулярный оси у. Пусть на маленькую площадку DxDz действует сила DF2.
    Разлагая снова эту силу на три компоненты, как показано на фиг. 31.7, мы опре­деляем три компоненты на­пряжения Sxy, Syy, Szy как силы, действующие на единичную площадь в этих трех направлениях.
   
    Фиг. 31.7. Сила, действующая на элемент площади, перпенди­кулярной оси у, разлагается на три взаимно перпендикулярные компоненты.
    Наконец, проведем воображаемый раз­рез, перпендикулярный оси z, и определим три компоненты Sxz, Syz и Szz. Таким образом, получается девять чисел:
   
    Я хочу теперь показать, что этих девяти величин достаточ­но, чтобы полностью описать внутреннее напряженное состоя­ние, и что Sij-действительно тензор. Предположим, что мы хо­тим знать силу, действующую на поверхность, наклоненную под некоторым произвольным углом. Можно ли найти ее, ис­ходя из Sij? Можно, и это делается следующим образом. Вооб­разите маленькую призму, одна грань N которой наклонна, а другие — параллельны осям координат. Если окажется, что грань N параллельна оси z, то получается картина, изобра­женная на фиг. 31.8.
   
    Фиг. 31.8. Разложение на компо­ненты силы Fn, действующей на грани N (с единичной нормалью n).
    (Это, конечно, частный случай, но он до­статочно хорошо иллюстрирует общий метод.) Дальше, напря­жения, действующие на эту призмочку, должны быть такими, чтобы она находилась в равновесии (по крайней мере в пределе бесконечно малого размера), так что действующая на нее пол­ная сила должна быть равна нулю. Силы, действующие на гра­ни, параллельные осям координат, известны нам непосред­ственно из тензора Sij. А их векторная сумма должна равняться силе, действующей на грань N, так что эту силу можно выра­зить через Sij.
    Наше допущение, что поверхностные силы, действующие на малый объем, находятся в равновесии, предполагает отсутствие объемных сил, подобных силе тяжести или псевдосилам, которые тоже могут присутствовать, если наша система координат не инерциальна. Заметьте, однако, что такие объемные силы бу­дут пропорциональны объему призмочки и поэтому пропорцио­нальны Dx,Dy, Dz, тогда как поверхностные силы пропорцио­нальны DxDy, DyDz и т. п. Итак, если размер призмочки взять достаточно малым, то объемные силы будут пренебрежимо малы по сравнению с поверхностными.
    А теперь сложим силы, действующие на нашу призмочку. Возьмемся сначала за х-компоненту, которая состоит из пяти частей, по одной от каждой грани. Но если Dz достаточно мало, то силы от треугольных граней (перпендикулярные оси z) будут равны друг другу и противоположны по направлению, поэтому о них можно забыть. На основание призмы действует x-компонента силы, равная
    DFx2=SxyDхDz,
    а x-компонента силы, действующей на вертикальную прямо­угольную грань, равна
    DFx1=SхxDz.
    Сумма этих двух сил должна быть равна x-компоненте силы, действующей извне на грань N. Обозначим через n единич­ный вектор нормали к грани N, а через Fn — действующую на нее силу, тогда получим
    DFxn=SxxDyDz+SxyDxDz.
    Составляющая напряжения по оси х (Sxn), действующего в этой плоскости, равна силе DFxn, деленной на площадь, т. е. DzЦ(Dx2+Dy2), или
   
    Но, как видно из фиг. 31.8, отношение Dх/Ц(Dx2+Dy2) — это косинус угла q между n и осью у и может быть записан как пу, т. е. y-компонента вектора n. Аналогично, Dy/Ц(Dx2+Dy2) равно sinq=nх. Поэтому мы можем написать
    Sxn=Sxxnx+Sxyny
    рели теперь обобщить это на произвольный элемент поверхности, то мы получим
    Sxn= Sxxnx+Sxyny+Sxznz,
    или в еще более общей форме:
   
    Так что мы действительно можем выразить силу, действующую на произвольную площадь, через элементы Sij и полностью описать внутреннее напряжение.
    Уравнение (31.24) говорит, что тензор Sij связывает силу Sn с единичным вектором n точно так же, как aij связывает Р с Е. Но поскольку n и Sn — векторы, то компоненты Sij при изменении осей координат должны преобразовываться как тензор. Так что Sij действительно тензор.
    Можно также доказать, что Sij симметричный тензор. Для этого нужно обратить внимание на силы действующие на маленький кубик материале. Возьмем кубик, rpaни которого параллельны осям координат, и посмотрим на eго разрез (фиг. 31.9).
   
    Фиг. 31.9. х- и у-компоненты сил, действующих на четыре грани маленького единичного кубика.
    Если допустить что ребра куба равны единице, то х- и y-компоненты сил на гранях, перпендикулярных к осям х и у, должны быть такими, как показано на рисунке. Если взять достаточно маленький кубик, можно надеяться, что напряжение на его противоположных гранях будет отличаться ненамного, а поэтому компоненты сил должны быть равны и противоположны, как это показано на рисунке. Заметьте теперь, что на кубик не должен действовать никакой момент си иначе кубик начал бы вращаться. Но полный момент относительно центра равен произведению (Syx-Sxy) на единичную длину ребра куба, а поскольку полный момент равен нулю, то S должно быть равно Sxy, и тензор напряжений, таким образом, оказывается симметричным.
    Благодаря этой симметрии тензора Sij его можно то; описывать эллипсоидом с тремя главными осями. Напряжение имеет особенно простой вид на площадках, нормальных к этим: осям: оно соответствует чистому сжатию или растяжению в направлении главных осей. Вдоль этих площадок нет никак сдвиговых сил, причем такие оси, для которых отсутствуют сдвиговые силы, можно выбрать для любого напряжения. Если эллипсоид превращается в сферу, то в любом направлении действуют только нормальные силы. Это соответствует гидростатическому давлению (положительному или отрицательном. Таким образом, для гидростатического давления тензор диагонален, причем все три компоненты его равны друг другу (фактически они просто равны давлению р). В этом случае мы можем написать
   
(31.25)
    Вообще говоря, тензор напряжений в куске твердого тела, а также его эллипсоид изменяются от точки к точке, поэтому для описания всего куска мы должны задать каждую компонен­ту Sij как функцию положения. Тензор напряжений, таким об­разом, является полем. Мы уже имели примеры скалярных по­лей, подобных температуре Т(х, у, z), и векторных полей, по­добных Е(х, у, z), которые в каждой точке задавались тремя числами. А теперь перед нами пример тензорного поля, задавае­мого в каждой точке пространства девятью числами, из кото­рых для симметричного тензора Sij реально остается только шесть. Полное описание внутренних сил в произвольном твер­дом теле требует знания шести функций координат х, у и z.
    § 7. Тензоры высших рангов
    Тензор напряжений Sij описывает внутренние силы в веществе. Если при этом материал упругий, то внутренние деформа­ции удобно описывать с помощью другого тензора Tij— так называемого тензора деформаций. Для простого объекта, подоб­ного бруску из металла, изменение длины DL, как вы знаете, приблизительно пропорционально силе, т. е. он подчиняется закону Гука
    DL=gF.
    Для произвольных деформаций упругого твердого тела тензор деформаций Tij связан с тензором напряжений Sij системой линейных уравнений
   
    Вы знаете также, что потенциальная энергия пружины (или бруска) равна
   
    а обобщением плотности упругой энергии для твердого тела будет выражение
   
    Полное описание упругих свойств кристалла должно задаваться коэффициентами gijkl. Это знакомит нас с новым зверем — тен­зором четвертого ранга. Поскольку каждый из индексов может принимать одно из трех значений — х, у или z, то всего ока­зывается 34=81 коэффициент. Но различны из них на самом де­ле только 21. Во-первых, поскольку тензор Sij симметричен, у него остается только шесть различных величин, и поэтому в уравнении (31.27) нужны только 36 различных коэффициен­тов. Затем, не изменяя энергии, мы можем переставить Sij и Skl, так что gijkl должно быть симметрично при перестановке пары индексов ij и kl. Это уменьшает число коэффициентов до 21. Итак, чтобы описать упругие свойства кристалла низшей воз­можной симметрии, требуется 21 упругая постоянная! Разу­меется, для кристаллов с более высокой симметрией число необходимых постоянных уменьшается. Так, кубический кри­сталл описывается всего тремя упругими постоянными, а для изотропного вещества хватит и двух.
    В справедливости последнего утверждения можно убе­диться следующим образом. В случае изотропного материала компоненты gijkl не должны зависеть от поворота осей. Как это может быть? Ответ: они могут быть независимы, только когда выражаются через тензоры dij. Но существует лишь два воз­можных выражения, имеющих требуемую симметрию,— это dijdkl и dikdjl+dil+djk, так что gijkl должно быть их линейной комбинацией. Таким образом, для изотропного материала
    gijkl =а(dijdkl) + b(dikdjl+dildjk);
    следовательно, чтобы описать упругие свойства материала, тре­буются две постоянные: а и b. Я предоставляю вам самим до­казать, что для кубического кристалла требуются три такие постоянные.
    И еще один последний пример (на этот раз пример тензора третьего ранга) дает нам пьезоэлектрический эффект. При на­пряженном состоянии в кристалле возникает электрическое поле, пропорциональное тензору напряжений. Общий закон пропорциональности имеет вид
   
    где eiэлектрическое поле, a Pijkпьезоэлектрические коэф­фициенты (пьезомодули), составляющие тензор. Можете ли вы сами доказать, что если у кристалла есть центр инверсии (т. е. если он инвариантен относительно замены х, у, z®-х,-y,-z), то все его пьезоэлектрические коэффициенты равны нулю.
    § 8. Четырехмерный тензор электро­магнитного импульса
    Все тензоры, с которыми мы сталкивались в этой главе, были связаны с трехмерным пространством; они определялись как величины, имеющие известные трансформационные свойства при пространственных поворотах. А вот в гл. 26 (вып. 6) мы имели возможность воспользоваться тензором в четырехмерном про­странстве-времени: это был тензор электромагнитного поля Fmv. Компоненты такого четырехмерного тензора особым образом преобразуются при преобразованиях Лоренца. (Мы этого, прав­да, не делали, но могли бы рассматривать преобразования Ло­ренца как своего рода «вращение» в четырехмерном «простран­стве», называемом пространством Минковского; тогда аналогия с тем, что мы рассматривали здесь, была бы ярче.)
    В качестве последнего примера мы хотим рассмотреть дру­гой тензор в четырех измерениях (t, x, y, z) теории относитель­ности. Когда мы говорили о тензоре напряжений, то опреде­ляли Sij как компоненту силы, действующую на единичную площадку. Но сила равна скорости изменения импульса со временем. Поэтому вместо того, чтобы говорить «Sxy — это х-компонента силы, действующей на единичную площадку, пер­пендикулярную оси у», мы с равным правом могли бы сказать: «Sxy — это скорость потока x-компоненты импульса через еди­ничную площадку, перпендикулярную оси у». Другими словами, каждый член Sij представляет поток i-й компоненты импульса через единичную площадку, перпендикулярную оси j. Так обстоит дело с чисто пространственными компонентами, но они составляют только часть «большего» тензора Smv в четырехмер­ном пространстве m. и v=t, x, у, z), содержащего еще дополни­тельные компоненты Stx, S yt, Stt и т. п. Попытаемся теперь выяс­нить физический смысл этих дополнительных компонент.
    Нам известно, что пространственные компоненты представ­ляют поток импульса. Чтобы найти ключ к распространению этого понятия на «временное направление», обратимся к «по­току» другого рода — потоку электрического заряда. Скорость потока скалярной величины, подобной заряду (через единичную площадь, перпендикулярную потоку), является пространствен­ным вектором — вектором плотности тока j. Мы видели, что временная компонента вектора потока — это плотность теку­щего вещества. Например, j можно скомбинировать с плотно­стью заряда jt=r и получить четырехвектор jm=(r, j), т. е. значок m у вектора jm принимает четыре значения: t, х, у, z. Это означает «плотность», «скорость потока в x-направлении», «скорость потока в y-направлении» и «скорость потока в z-направлении» скалярного заряда.
    Теперь по аналогии с нашим утверждением о временной ком­поненте потока скалярной величины можно ожидать, что вместе c Sxx,Sxy и Sxz, описывающими поток x-компоненты импульса, должна быть и временная компонента Sxt , которая по идее дол­жна бы описывать плотность того, что течет, т. е. Sxt должна быть плотностью х-компоненты импульса. Таким образом, мы можем расширить наш тензор по горизонтали, включив в него t-компоненты, и в нашем распоряжении оказываются:
    Sxt плотность x-компоненты импульса,
    Sxx поток z-компоненты импульса в направлении оси х,
    Sxy поток y-компоненты импульса в направлении оси у,
    Sxz поток z-компоненты импульса в направлении оси z.
    Аналогичная вещь происходит и с y-компонентой; у нас есть три компоненты потока: Syx , Syy и Syz , к которым нужно добавить четвертый член:
    Syt плотность y-компоненты импульса,
    а к трем компонентам Szx, Szy и Szz мы добавляем
    Szt плотность z-компоненты импульса.
    В четырехмерном пространстве у импульса существует также и t-компонента, которой, как мы знаем, является энер­гия. Так что тензор Sij следует продолжить по вертикали с включением в него Stx, Sty и Stz, причем
    Stx поток энергии в направлении оси х, Sty поток энергии в направлении оси у, (31.28) Stz поток энергии в направлении оси z,
    т. е. Stx— это поток энергии в единицу времени через поверх­ность единичной площади, перпендикулярную оси х, и т. д. Наконец, чтобы пополнить наш тензор, нужна еще величина Stt, которая должна быть плотностью энергии. Итак, мы расширили наш трехмерный тензор напряжений до четырехмерного тензора энергии-импульса Smv. Индекс m может принимать четыре зна­чения: t, х, у и z, которые означают «плотность», «поток через единичную площадь в направлении оси х», «поток через единич­ную площадь в направлении оси y» и «поток через единичную площадь в направлении оси z». Значок v тоже принимает четы­ре значения: t, х, у, z, которые говорят нам, что же именно течет: «энергия», x-компонента импульса», «y-компонента им­пульса» или же «z-компонента импульса».
    В качестве примера рассмотрим этот тензор не в веществе, а в пустом пространстве с электромагнитным полем. Вы знаете, что поток энергии электромагнитного поля описывается век­тором Пойнтинга S=e0c2EXВ. Так что х-, у- и z-компоненты вектора S с релятивистской точки зрения являются компонентами: Six, Stн и Stz нашего тензора энергии-импульса. Симметрия тензора Sij переносится и на временные компоненты, так что четы­рехмерный тензор Smv тоже симметричен:
    Smv=Svm. . (31.29)
    Другими словами, компоненты Sxt, Syt, Szt, которые представ­ляют плотности х-, у- и z-компонент импульса, равны также х-, у- и z-компонентам вектора Пойнтинга S, или, как мы ви­дели раньше из других соображений, вектора потока энергии.
    Оставшиеся компоненты тензора электромагнитного напря­жения Smv тоже можно выразить через электрическое и магнит­ное поля Е и В. Иначе говоря, для электромагнитного поля в пустом пространстве мы должны допустить существование тензора напряжений, или, выражаясь менее таинственно, по­тока импульса электромагнитного поля. Мы уже обсуждали это в гл. 27 (вып. 6) в связи с уравнением (27.21), но тогда мы не входили в детали.
    Тем из вас, кто хочет испытать свою удаль на четырехмер­ных тензорах, может понравиться выражение для тензора Smv через поля:
   
    где суммирование по a и b проводится по всем их значениям (т. е. t, x, у и z), но, как обычно в теории относительности, для суммы S и символа d принимается специальное соглашение. В суммах слагаемые со значками х, у, z должны вычитаться, а dtt=+1, тогда как dxx.=dуу = dzz=-1 и dmv=0 для всех m№v (с=1). Сможете ли вы доказать, что эта формула приводит к плотности энергии Stt=(e0/2)(E2+B2) и вектору Пойнтинга e0ЕXВ? Можете ли вы показать, что в электростатическом поле, когда В=0, главная ось напряжения направлена по электриче­скому полю и вдоль направления поля возникает натяжение (e0/2)E2 и равное ему давление в направлении, перпендикуляр­ном направлению поля?
    * Если не полагать с=1, как это делается здесь, то плотность энергии в принятых в книге единицах будет равна (e0/2)(E2+с2B2) или в единицах СИ 1/2[e0E2+(l/m0)B2]. — Прим. ред.
    * Эту работу, затраченную на создание поляризации электрическим полем, не нужно путать с потенциальной энергией —p0*Е постоянного дипольного момента p0 в поле Е.
    * Обычно для коэффициентов пропорциональности между Р и Е пользуются термином тензор восприимчивости, оставляя термин поля­ризуемость для величин, относящихся к одной частице. Прим. ред.

    * В гл. 10, следуя общепринятому соглашению, мы писали Р=e0cЕ и величину c (хи) называли «восприимчивостью». Здесь же нам удобнее пользоваться одной буквой, так что вместо e0c мы будем писать a. Для изо­тропного диэлектрика a=(c-1)e0, где c — диэлектрическая проницаемость (см. гл. 10 §4 вып.5)

    Главa 32
    ПОКАЗАТЕЛЬ ПРЕЛОМЛЕНИЯ ПЛОТНОГО ВЕЩЕСТВА
    § 1. Поляризация вещества
    § 2. Уравнения Максвелла в диэлектрике
    § 3. Волны в диэлектрике
    § 4. Комплексный показатель преломления
    § 5. Показатель преломления смеси
    § 6. Волны в металлах
    § 7.Низкочастотное и высокочастотное приближение глубина скин-слоя и плазменная частота
    Повторить: всё что в табл. 32.
    § 1. Поляризация вещества
    Здесь я хочу обсудить явления преломления света, ну и, разумеется, его поглощение плот­ным веществом. Теорию показателя преломле­ния мы уже рассматривали в гл. 31 (вып. 3), но тогда наши знания математики были весьма ограничены и мы остановились только на по­казателе преломления веществ с малой плотно­стью наподобие газов. Но физические принципы, приводящие к возникновению показателя пре­ломления, мы там все же выяснили. Электри­ческое поле световой волны поляризует мо­лекулы газа, создавая тем самым осцилли­рующие дипольные моменты, а ускорение ос­циллирующих зарядов приводит к излучению новых волн поля. Это новое поле, интерфери­руя со старым, изменяет его. Изменение поля эквивалентно тому, что происходит сдвиг фазы первоначальной волны. Из-за того что сдвиг фазы пропорционален толщине материала, эф­фект в целом оказывается эквивалентным из­менению фазовой скорости света в материале. Прежде, когда рассматривалось это явление, мы пренебрегали усложнениями, возникаю­щими от таких эффектов, как действие новой измененной волны на поле осциллирующего диполя. Мы предполагали, что силы, действую­щие на заряды атомов, определяются только падающей волной, тогда как на самом деле на осциллятор действует не только падающая волна, но и волны, излученные другими атомами. В то время нам еще было трудно учесть этот эф­фект, поэтому мы изучали только разреженные газы, где его можно считать несущественным.
    Ну а теперь мы увидим, что эта задача с помощью дифференциальных уравнений решается совсем просто. Конечно, дифференциальные уравнения затуманивают физическую причину возникновения преломле­ния (как результата интерференции вновь излученных волн с первоначальными), но зато они упрощают теорию плотного материала. В этой главе сойдется вместе многое из того, что мы делали уже раньше. Практически мы уже получили все, что нам потребуется, так что по-настоящему новых идей в этой главе будет сравнительно немного. Поскольку вам может понадобиться освежить в памяти то, с чем мы здесь столкнемся, то в табл. 32.1 приводится список уравнений, которые я соби­раюсь использовать вместе со ссылкой на те места, где их можно найти. Во многих случаях из-за нехватки времени я не смогу снова останавливаться на физических аргументах, а сразу же буду браться за уравнения.
    Таблица 32.1 · ЧТО БУДЕТ ИСПОЛЬЗОВАНО В ЭТОЙ ГЛАВЕ
   
    Начну с напоминания о механизме преломления в газе. Мы предполагаем, что в единице объема газа находится N ча­стиц и каждая из них ведет себя как гармонический осциллятор. Мы пользуемся моделью атома или молекулы, к которой элект­рон привязан силой, пропорциональной его перемещению (как будто он удерживается пружинкой). Отметим, что такая модель атома с классической точки зрения незаконна, однако позднее будет показано, что правильная квантовомеханическая теория дает (в простейших случаях) эквивалентный результат. В наших прежних рассмотрениях мы не учитывали «тормозящей» силы в атомном осцилляторе, а сейчас это будет сделано. Такая сила соответствует сопротивлению при движении, т. е. она пропор­циональна скорости электрона. Уравнением движения при этом будет
    F=qeE =m(x+gx+w20x), (32.1)
    где х — перемещение, параллельное направлению поля Е. (Осциллятор предполагается изотропным, т. е. восстанавли­вающая сила одинакова во всех направлениях. Кроме того, на время мы ограничимся линейно поляризованной волной, так что поле Е не меняет своего направления.) Если действую­щее на атом электрическое поле изменяется со временем сину­соидально, то мы пишем.
    E=E0eiwt. (32.2)
    С той же самой частотой будет осциллировать и перемещение, поэтому можно считать
    х=х0еiwt .
    Подставляя х=iwх и х=-w2х, можно выразить х через Е:
   
    А зная перемещение, можно вычислить ускорение х и найти от­ветственную за преломление излученную волну. Именно таким способом в гл. 31 (вып. 3) мы подсчитывали показатель пре­ломления.
    Теперь же мы пойдем другим путем. Индуцированный дипольный момент атома р равен qex, или в силу уравнения (32.3)
   
    Так как р пропорционально Е, то мы пишем
    р=e0a(w)Е, (32,5) где a — атомная поляризуемость:
   
    Подобный же ответ для движения электронов в атоме дает и квантовая механика, но с учетом следующих особен­ностей. У атомов есть несколько собственных частот, каждая из которых имеет свою диссипативную постоянную g. Кроме того, каждая гармоника имеет еще свою эффективную «силу», выражаемую в виде произведения поляризуемости при дан­ной частоте на постоянную связи f, которая, как ожидается, по порядку величины равна единице. Обозначая каждый из трех параметров w0, g и f для каждой из гармоник через wok, gk и fk и суммируя по всем гармоникам, мы вместо (32.6) получаем
   
    Если число атомов в единице объема вещества равно N, то поляризация Р будет просто Np=e0NaE, т. е. пропорцио­нальна Е:
    Р=e0Na(w)Е. (32.8)
    Другими словами, когда на материал действует синусоидальное электрическое поле, оно индуцирует пропорциональный себе дипольный момент, причем константа пропорциональности а, как мы уже отмечали, зависит от частоты. При очень больших частотах a мала: реакция материала слабая. А вот при низких частотах реакция может быть очень сильной. Константа про­порциональности, кроме того, еще оказывается комплексной, т. е. поляризация не следует точно за всеми изменениями элект­рического поля, а в какой-то степени может быть сдвинута по фазе. Во всяком случае, электрическое поле вызывает в мате­риале поляризацию, пропорциональную его напряженности.
    § 2. Уравнения Максвелла в диэлектрике
    Наличие в веществе поляризации означает, что там возни­кают поляризационные заряды и токи, которые необходимо учитывать в полных уравнениях Максвелла при нахождении полей. Сейчас мы собираемся решать уравнения Максвелла для случая, когда заряды и токи не равны нулю, но неявно опреде­ляются вектором поляризации. Нашим первым шагом должно быть явное нахождение плотности зарядов r и плотности тока j, усредненных по тому же самому малому объему, который имел­ся в виду при определении вектора Р. Потом необходимые нам значения r и j могут быть определены из поляризации. В гл. 10 (вып. 5) мы видели, что когда поляризация Р меняется от точки к точке, то возникает плотность зарядов:
    rпол=-С·Р. (32.9)
    В то время мы имели дело со статическими полями, но эта же формула справедлива и для переменных полей. Но когда Р изменяется со временем, заряды движутся, так что появляется поляризационный ток. Каждый из осциллирующих зарядов вносит в ток свой вклад, равный произведению его заряда qe на скорость v. Когда же таких зарядов в единице объема N штук, то они создают плотность тока j:
    j=Nqev.
    Ну а поскольку известно, что v=dx/dt, то j=Nqedx/dt, что как раз
    равно dP/dt. Следовательно, при переменной поляризации воз­никает плотность тока
    jпол=dP/dt (32.10)
    Наша задача стала теперь простой и понятной. Мы пишем уравнения Максвелла с плотностями заряда и тока, определяе­мыми поляризацией Р посредством уравнений (32.9) и (32.10). (Предполагается, что других зарядов и токов в веществе нет.) Затем мы свяжем Р с Е формулой (32.5) и будем разрешать их относительно Е и В, отыскивая при этом волновое решение.
    Но прежде чем приступить к решению, мне бы хотелось сде­лать одно замечание исторического характера. Первоначально Максвелл писал свои уравнения в форме, отличающейся от той, в которой они используются нами. И именно потому, что урав­нения писались в другой форме в течение многих лет (да и сей­час многими пишутся так), я постараюсь объяснить вам разни­цу. В те дни механизм диэлектрической проницаемости не был понятен с ясностью и полнотой. Не была ясна ни природа ато­мов, ни существование поляризации в веществе. Поэтому тогда не понимали, что С·P дает дополнительный вклад в плотность заряда р. Были известны только заряды, не связанные в атомах (такие, как заряды, текущие по проводу или возникающие при трении).
    Сегодня же мы предпочитаем обозначать через r полную плотность зарядов, включая в нее и заряды, связанные с инди­видуальными атомами. Если назвать эту часть зарядов rпол, то можно написать
    r=rпол+rдр,
    где rдр— плотность зарядов, учтенная Максвеллом и относя­щаяся к другим зарядам, не связанным с определенными атомами. При этом мы бы написали
   
    После подстановки rпол из (32.9) получаем
   
    или
   
    В плотность тока, фигурирующую в уравнениях Макс­велла для СXB, вообще говоря, тоже вносится вклад от связанных атомных электронных токов. Поэтому мы можем написать
    j=jпол+jдр,
    причем уравнение Максвелла приобретает вид
   
    Используя уравнение (32.10), получаем
   
    Теперь вы видите, что если бы мы определили новый вектор D
    D=e0E+P, (32.14)
    то два уравнения поля приняли бы вид
    С·D=rдр (32.15)
    и
   
    Это и есть та форма уравнений, которую использовал Мак­свелл для диэлектриков. А вот и остальные два уравнения:
    СXЕ=-дB/дt
    и
    С·B=0,
    которые в точности совпадают с нашими.
    Перед Максвеллом и другими учеными того времени вставала проблема магнетиков (за них мы вскоре примемся). Они ничего не знали о циркулирующих токах, ответственных за атомный магнетизм и поэтому, в плотности тока утеряли еще одну часть. Вместо уравнения (32.16) они на самом деле писали
   
    где Н отличается от e0с2В, так как последнее учитывает эффекты атомных токов. (При этом j' представляет то, что осталось от то­ков.) Таким образом, у Максвелла было четыре полевых век­тора: Е, D, В и Н, причем в D и Н скрывалось то, на что он не обратил внимания,— процессы, происходящие внутри вещест­ва. Уравнения, написанные в таком виде, вы встретите во мно­гих местах.
    Чтобы решить их, необходимо как-то связать D и Н с дру­гими полями, поэтому зачастую писали
    D =eE
    и
    В=mH. (32.18)
    Однако эти связи верны лишь приближенно для некоторых ве­ществ, и то лишь когда поля не изменяются слишком быстро со временем. (Для синусоидально изменяющихся полей зачастую можно писать уравнения таким способом, считая при этом e и m комплексными функциями частоты, но для произволь­ных изменений поля со временем это неверно.) На какие только ухищрения не пускаются ученые, чтобы решить уравнения! А мне кажется, что правильнее всего оставить уравнения запи­санными через фундаментальные величины, как мы понимаем их теперь, т. е. как раз то, что мы и проделали.
    § 3. Волны в диэлектрике
    Теперь нам предстоит выяснить, какого сорта электро­магнитные волны могут существовать в диэлектрическом ве­ществе, где других зарядов, кроме тех, что связаны в атомах,
    нет. Таким образом, мы возьмем r=-С·Р и j=дP/дt . При этом уравнения Максвелла примут такой вид:
   
    Мы можем решить эти уравнения, как делали это прежде. Начнем с применения к уравнению (32.19в) операции ротора:
    СX(СXE)=-(д/дt)СXB.
    Используя затем векторное тождество
    СX(СXE) = С(С·E)-С2E и подставляя выражение для СXB из (32.19б), получаем
   
    Используя уравнение (32.19а) для С·Е, находим
   
    Таким образом, вместо волнового уравнения мы теперь полу­чили, что даламбертиан Е равен двум членам, содержащим по­ляризацию Р.
    Однако Р зависит от Е, поэтому уравнение (32.20) все еще допускает волновые решения. Сейчас мы будем ограничиваться изотропными диэлектриками, т. е. Р всегда будет иметь то же направление, что и Е. Попробуем найти решение для волны, движущейся в направлении оси z. Электрическое поле при этом будет изменяться как еi(wt-kz). Предположим также, что волна поляризована в направлении оси х, т. е. что электрическое поле имеет только x-компоненту. Все это записывается следую­щим образом:
    Ex=E0ei(wt-kz). (32.21)
    Вы знаете, что любая функция от (z-vt) представляет вол­ну, бегущую со скоростью v. Показатель экспоненты в выраже­нии (32.21) можно переписать в виде
    -ik[z-(w/k)t],
    так что выражение (32.21) представляет волну, фазовая ско­рость которой равна
    vфаз=w/k.
    В гл. 31 (вып. 3) показатель преломления n определялся нами из формулы
    vфаз=c/n.
    С учетом этой формулы (32.21) приобретает вид
    Ex=E0eiw(t-nz/c).
    Таким образом, показатель n можно определить, если мы най­дем ту величину k, которая необходима, чтобы выражение (32.21) удовлетворяло соответствующим уравнениям поля, и затем воспользуемся соотношением
    n=kc/w. (32.22)
    В изотропном материале поляризация будет иметь только x-компоненту; кроме того, Р не изменяется с изменением коор­динаты х, поэтому С·P=0 и мы сразу же избавляемся от пер­вого члена в правой стороне уравнения (32.20). Вдобавок мы считаем наш диэлектрик «линейным», поэтому Рх будет изме­няться как еiwt и d2Px/dt2= -w2Px. Лапласиан же в уравне­нии (32.20) превращается просто в д2Ex/dz2=-k2Еx, так что в результате получаем
   
    Теперь на минуту предположим, что раз Е изменяется си­нусоидально, то Р можно считать пропорциональной Е, как в уравнении (32.5). (Позднее мы вернемся к этому предположе­нию и обсудим его.) Таким образом, пишем
    Px=e0NaEx.
    При этом Ех выпадает из уравнения (32.23), и мы находим
    k2=w2/c2(1+Na). (32.24)
    Мы получили, что волна вида (32.21) с волновым числом k, задаваемым уравнением (32.24), будет удовлетворять уравне­ниям поля. Использование же выражения (32.22) для показате­ля n дает
    n2 = l+Na. (32.25)
    Сравним эту формулу с тем, что получилось у нас для пока­зателя преломления газа (гл. 31, вып. 3). Там мы нашли урав­нение (31.19), которое тогда имело вид
   
    Формула (32.25) после подстановки w из (32.6) дает
   
    Что здесь нового? Во-первых, появился новый член igw, возникший в результате учета поглощения энергии в осцилля­торах. Во-вторых, слева вместо n теперь стоит n2 и, кроме того, отсутствует дополнительный множитель 1/2. Но заметьте, что если значение N достаточно мало, так что n близок к единице (как это имеет место в газе), то выражение (32.27) говорит, что n2 равен единице плюс некое малое число, т. е. n2=1+e. При этом условии мы можем написать, что n=Ц(1+e)»l+e/2, и оба выра­жения оказываются эквивалентными. Таким образом, наш но­вый метод дает для газа тот же самый, найденный нами ранее результат.
    Теперь можно надеяться, что выражение (32.27) должно давать показатель преломления и для плотных материалов. Но по некоторым причинам оно нуждается в модификации. Во-первых, при выводе этого уравнения предполагалось, что поля­ризованное поле, действующее на каждый из атомов,— это поле Ех. Однако такое предположение неверно, поскольку в плотном материале существуют и другие поля, создаваемые соседними атомами, которые могут быть сравнимы с Ех. Анало­гичную задачу мы уже рассматривали при изучении статических полей в диэлектрике (см. гл. 11, вып. 5). Вы, вероятно, помните, что мы нашли поле, действующее на отдельный атом, представив его сидящим в сферической полости в окружающем диэлектрике. Поле в такой полости (мы назвали его локальным) увеличивается по сравнению со средним полем Е на величину Р/3e0. (Не за­будьте, однако, что этот результат, строго говоря, справедлив только для изотропного материала, а также в случае куби­ческого кристалла.)
    Те же рассуждения верны и для электрического поля в вол­не, но до тех пор, пока длина ее много больше расстояния между атомами. При таком ограничении
   
    Именно это локальное поле следует использовать вместо Е в (32.8), т. е. это выражение должно быть переписано следую­щим образом:
    Р =e0NaЕлок. (32.29)
    Подставляя теперь Елок из формулы (32.28), находим
   
    или
   
    Иными словами, Р для плотного материала все еще пропорцио­нальна Е (для синусоидального поля). Однако константа про­порциональности будет уже e0/Na/[1-(Na/3)], а не e0Nallfa, как раньше. Таким образом, нам нужно поправить формулу (32.25):
   
    Более удобно переписать это в виде
   
    который алгебраически эквивалентен прежнему. Это и есть известная формула Клаузиуса — Моссотти.
    В плотном материале возникает и другое усложнение. По­скольку атомы расположены слишком тесно, они сильно взаимо­действуют друг с другом. Поэтому внутренние гармоники осцил­ляции изменяются. Собственные частоты атомных осцилляций размазываются этими взаимодействиями и обычно весьма сильно подавляются ими, а коэффициент трения становится очень боль­шим. Таким образом, все w0 и g твердого вещества будут дру­гими, чем для свободных атомов. С этой оговоркой мы все-таки можем представлять а, по крайней мере приближенно, уравнением (32.7), так что
   
    Наконец, последнее усложнение. Если плотный материал представляет собой смесь нескольких компонент, то каждая из них дает свой вклад в поляризацию. Полная a будет суммой вкладов различных компонент смеси [за исключением неточ­ности приближения локального поля в упорядоченных кри­сталлах, т. е. выражения (32.28) — эффекты, которые мы обсуж­дали при разборе сегнетоэлектриков]. Обозначая через nj число атомов каждой компоненты в единице объема, мы должны заменить формулу (32.32) следующей:
   
    где каждая aj будет определяться выражением типа (32.7). Выражение (32.34) завершает нашу теорию показателя прелом­ления. Величина 3(n2-1)/(n2+2) задается комплексной функ­цией частоты, каковой является средняя атомная поляризуе­мость a(w). Точное вычисление a(w) (т. е. нахождение fk, gk и w0k) для плотного вещества — одна из труднейших задач квантовой механики. Это было сделано только для нескольких особенно простых веществ.
    § 4. Комплексный показатель преломления
    Обсудим теперь следствия нашего результата (32.33). Прежде всего обратите внимание на то, что a — комплексное число, так что показатель преломления n тоже оказывается комплексным. Что это означает? Давайте возьмем и запишем n в виде веществен­ной и мнимой частей:
   
    где nR и njвещественные функции w. Мы написали inj с отрицательным знаком, так что nj для обычных оптических материалов будет положительной величиной. (Для обычных оптически неактивных материалов, которые не служат сами источниками света, как это происходит у лазеров, gположитель­ное число, а это делает мнимую часть n отрицательной.) Наша: плоская волна запишется теперь через n следующим образом:
    Ех0е-iw(t-nz/c).
    Если подставить n в виде выражения (32.35), то мы получим
   
    и с увеличением z она экспоненциально убывает. График напря­женности электрического поля как функции от z в некоторый момент времени и для nnR/2p показан на фиг. 32.1.
   
    Фиг. 32.1. График поля Ех в некоторый момент t при nI»nR2/p.
    Мнимая часть показателя преломления из-за потерь энергии в атомных осцилляторах приводит к ослаблению волны. Интенсивность волны пропорциональна квадрату амплитуды, так что
    Интенсивность ~е-2wnIz/c.
    Часто это записывается как
    Интенсивность ~е-bz,
    где b=2wnI/с — коэффициент поглощения. Таким образом, в уравнении (32.33) содержится не только теория показателя преломления вещества, но и теория поглощения им света.
    В тех материалах, которые мы обычно считаем прозрачными, величина c/wnI, имеющая размерность длины, оказывается гораздо больше толщины материала.
    § 5. Показатель преломления смеси
    В нашей теории показателя преломления имеется еще одно предсказание, которое можно проверить экспериментально. Предположим, что мы рассматриваем смесь двух материалов. Показатель преломления смеси не будет средним двух показа­телей, а определяется через сумму двух поляризуемостей, как в уравнении (32.34). Если, скажем, мы интересуемся показа­телем преломления раствора сахара, то полная поляризуемость будет суммой поляризуемостей воды и сахара. Но каждая из них, разумеется, должна подсчитываться исходя из данных о числе молекул N данного сорта в единице объема. Другими сло­вами, если в данном растворе содержится N1 молекул воды, поляризуемость которой a1, и N2 молекул сахарозы (C12H22O11), поляризуемость которой a2, то мы должны получить
   
    Этой формулой можно воспользоваться для экспериментальной проверки нашей теории — измерения показателя для различ­ных концентраций сахарозы в воде. Однако здесь мы должны сделать несколько допущений. Наша формула предполагает, что при растворении сахарозы никакой химической реакции не происходит и что возмущение индивидуальных осцилляторов при различных частотах отличается не слишком сильно. Поэ­тому наш результат, безусловно, будет только приближенным. Тем не менее давайте посмотрим, насколько он хорош.
    Раствор сахара мы выбрали потому, что мы располагаем хорошими данными измерений показателя преломления и, кроме того, сахар представляет собой молекулярный кристалл и переходит в раствор без ионизации и других изменений хими­ческого состояния.
    В первых трех столбцах табл. 32.2 приведены данные из указанного справочника. В столбце А дан процент сахарозы по весу, в столбце В приведена измеренная плотность в г/см3, а в столбце С даны измерения показателя преломления света с длиной волны 589,3 ммк. В качестве показателя чистого сахара мы взяли результаты измерений для кристалла сахара. Эти кристаллы не изотропны, так что показатель преломления в разных направлениях различен.
    Таблица 32.2 в ПОКАЗАТЕЛЬ ПРЕЛОМЛЕНИЯ РАСТВОРА САХАРА И СРАВНЕНИЕ С ПРЕДСКАЗАНИЕМ УРАВНЕНИЯ (32.37)