Скачать fb2
Feynmann 9

Feynmann 9


    Глава 11
    РАСПРОСТРАНЕНИЕ В КРИСТАЛЛИЧЕСКОЙ РЕШЕТКЕ

    § 1. Состояния электрона в одномерной решетке
    § 2. Состояния определенной энергии
    § 3. Состояния, зависящие от времени
    § 4. Электрон в трехмерной решетке
    § 5. Другие состояния в решетке
    § 6. Рассеяние на нерегулярностях решетки
    § 7. Захват нерегулярностями решетки
    § 8. Амплитуды рассеяния и связанные состояния

    § 1. Состояния электрона в одномерной решетке
    На первый взгляд вам может показаться, что обладающий небольшой энергией электрон с превеликим трудом протискивается через твердый кристалл. Атомы в нем уложены так, что их центры отстоят один от другого лишь на несколько ангстрем, а эффективный диаметр атома при рассеянии электронов составляет примерно 1Е или около этого. Иначе говоря, атомы, если их сравнивать с промежутками между ними, очень велики, так что можно ожидать, что средний свободный пробег между столкновениями будет порядка нескольких анг­стрем, а это практически равно нулю. Следует ожидать, что электрон почти тотчас же влетит в тот или иной атом. Тем не менее перед нами самое обычное явление природы: когда решетка идеальна, электрону ничего не стоит плавно пронестись сквозь кристалл, почти как сквозь вакуум. Странный этот факт — причина того, что металлы так легко проводят электричество; кроме того, он позволил изобрести множество весьма полезных устройств. Например, благо­даря ему транзистор способен имитировать радиолампу. В радиолампе электроны движутся свободно через вакуум, в транзисторе они тоже движутся свободно, но только через кристал­лическую решетку. Механизм того, что проис­ходит в транзисторе, будет описан в этой главе; следующая глава посвящена применениям этих принципов в различных практических уст­ройствах.
    Проводимость электронов в кристалле — один из примеров очень общего явления. Через кристаллы могут странствовать не только электроны, но и другие «объекты». Так, атомные возбуждения тоже могут путешествовать аналогичным способом. Явление, о котором мы сейчас будем говорить, то и дело возникает при изучении физики твердого состояния.
    Мы уже неоднократно разбирали примеры систем с двумя состояниями. Представим себе на этот раз электрон, который может находиться в одном из двух положений, причем в каждом из них он оказывается в одинаковом окружении. Предположим также, что имеется определенная амплитуда перехода электрона из одного положения в другое и, естественно, такая же ампли­туда перехода обратно, в точности, как в гл. 8, § 1 (вып. 8) для молекулярного иона водорода. Тогда законы квантовой механики приводят к следующим результатам. У электрона возникнет два возможных состояния с определенной энергией, причем каждое состояние может быть описано амплитудой того, что электрон пребывает в одном из двух базисных положений. В каждом из состояний определенной энергии величины этих двух амплитуд постоянны во времени, а фазы меняются во вре­мени с одинаковой частотой. С другой стороны, если электрон сперва был в одном положении, то со временем он перейдет в другое, а еще позже вернется в первое положение. Изменения амплитуды похожи на движение двух связанных маятников.
    Рассмотрим теперь идеальную кристаллическую решетку и вообразим, что в ней электрон может расположиться в неко­торой «ямке» возле определенного атома, имея определенную энергию. Допустим также, что у электрона имеется некоторая амплитуда того, что он перескочит в другую ямку, которая на­ходится неподалеку, возле другого атома. Это чем-то напоминает систему с двумя состояниями, но с добавочными осложнениями. После того как электрон достигает соседнего атома, он может перейти в совершенно новое место или вернуться в исходную позицию. Все это похоже не столько на пару связанных маят­ников, сколько на бесконечное множество маятников, связанных между собой. Это чем-то напоминает одну из тех машин (со­ставленных из длинного ряда стержней, прикрепленных к за­крученной проволоке), с помощью которых на первом курсе демонстрировалось распространение волн.
    Если у вас имеется гармонический осциллятор, связанный с другим гармоническим осциллятором, который в свою оче­редь связан со следующим осциллятором, который и т.д..., и если вы создадите в одном месте какую-то нерегулярность, то она начнет распространяться, как волна по проволоке. То же самое возникает и в том случае, если вы поместите электрон возле одного из атомов в длинной их цепочке.
    Как правило, задачи по механике легче всего решать на языке установившихся волн; это проще, чем анализировать послед­ствия отдельного толчка. Тогда появляется какая-то картина смещений, которая распространяется по кристаллу, как волна с заданной, фиксированной частотой. То же самое происходит с электроном, и по той же причине, потому что электрон описывается в квантовой механике похожими уравнениями.
    Но нужно помнить одну вещь: амплитуда для электрона быть в данном месте это амплитуда, а не вероятность. Если бы электрон просто просачивался из одного места в другое, как вода через дырочку, то его поведение было бы совсем иным. Если бы, скажем, мы соединили два бачка с водой тоненькой трубоч­кой, по которой вода из одного бачка по капле перетекала в другой, то уровни воды выравнивались бы по экспоненте. С электроном же происходит просачивание амплитуды, а не монотонное переливание вероятностей. А одно из свойств мнимого члена (множителя i в дифференциальных уравнениях квантовой механики) — что он меняет экспоненциальное реше­ние на колебательное. И то, что после этого происходит, ничуть не походит на то, как вода перетекает из одного бачка в другой.
    Теперь мы хотим квантовомеханический случай проанали­зировать количественно. Пусть имеется одномерная система, состоящая из длинной цепи атомов (фиг. 11.1,а).
   
    Фиг. 11.1. Базисные состояния электрона в одномерной решетке.
    (Кристалл, конечно, трехмерен, но физика в обоих случаях очень близка; если вы разберетесь в одномерном случае, то сможете разоб­раться и в том, что бывает в трех измерениях.) Мы хотим знать, что случится, если в эту линию атомов поместить отдельный электрон. Конечно, в реальном кристалле таких электронов мириады. Но большинство их (в непроводящем кристалле почти все) занимает в общей картине движения свое место, каждый вертится вокруг своего атома, и все оказывается совершенно установившимся. А мы хотим рассуждать о том, что будет, если внутрь поместить лишний электрон. Мы не будем думать о том, что делают прочие электроны, потому что будем считать, что на то, чтобы изменить их энергию, потребуется очень много энергии возбуждения. Мы собираемся добавить электрон и соз­дать как бы новый слабо связанный отрицательный ион. Следя за тем, что поделывает этот лишний электрон, мы делаем при­ближение, пренебрегая при этом внутренним механизмом атомов.
    Ясно, что этот электрон сможет перейти к другому атому, перенося в новое место отрицательный ион. Мы предположим, что (в точности, как и в случае электрона, «прыгавшего» от протона к протону) электрон может с какой-то амплитудой «прыгать» от атома к его соседям с любой стороны.
    Как же описывать такую систему? Что считать разумными базисными состояниями? Если вы вспомните, что мы делали, когда у электрона было только две возможные позиции, вы сможете догадаться. Пусть в нашей цепочке все расстояния между атомами одинаковы, и пусть мы их пронумеруем по по­рядку, как на фиг. 11.1,а. Одно базисное состояние — когда электрон находится возле атома № 6; другое базисное состоя­ние — когда электрон находится возле № 7, или возле № 8, и т. д.; n-е базисное состояние можно описать, сказав, что элект­рон находится возле атома № п. Обозначим это базисное со­стояние |n>. Из фиг. 11.1 ясно, что подразумевается под тремя базисными состояниями:
   
    С помощью этих наших базисных состояний можно описать любое состояние |j> нашего одномерного кристалла, задав все амплитуды <n|j> того, что состояние |j> находится в одном из базисных состояний, т. е. амплитуду того, что электрон распо­ложен близ данного частного атома. Тогда состояние |j> можно записать в виде суперпозиции базисных состояний:
   
    Кроме того, мы хотим еще предположить, что когда электрон находится близ одного из атомов, то имеется некоторая ампли­туда того, что он просочится к тому атому, что слева, или к тому, что справа. Возьмем простейший случай, когда счи­тается, что он может просочиться только к ближайшим соседям, а к следующему соседу он сможет дойти в два приема. Примем, что амплитуды того, что электрон перепрыгнет от одного атома к соседнему, равны iA/h (за единицу времени).
    Изменим на время обозначения, и амплитуду <n|j>, свя­занную с n-м атомом, обозначим через Сn. Тогда (11.1) будет иметь вид
   
    Если бы вы знали каждую из амплитуд Сn в данный момент, то, взяв квадраты их модулей, можно было бы получить вероят­ность того, что вы увидите электрон, взглянув в этот момент на атом п.
    Но что сталось бы чуть позже? По аналогии с изученными нами системами с двумя состояниями мы предлагаем составить гамильтоновы уравнения для этой системы в виде уравнений такого типа:
   
    Первый справа коэффициент Е0 физически означает энергию, которую имел бы электрон, если бы он не мог просачиваться от одного атома к другим. (Совершенно неважно, что мы назовем , Е0; мы неоднократно видели, что реально это не означает ничего, кроме выбора нуля энергии.) Следующий член представляет амплитуду в единицу времени того, что электрон из (n+1)-й ямки просочится в n-ю ямку, а последний член означает ампли­туду просачивания из (n-1)-й ямки. Как обычно, А считается постоянным (не зависящим от t).
    Для полного описания поведения любого состояния |j> надо для каждой из амплитуд Сn иметь по одному уравнению типа (11.3). Поскольку мы намерены рассмотреть кристалл с очень большим количеством атомов, то допустим, что состоя­ний имеется бесконечно много, атомы тянутся без конца в обе стороны. (При конечном числе атомов придется специально обращать внимание на то, что случается на концах.) А если ко­личество N наших базисных состояний бесконечно велико, то и вся система наших гамильтоновых уравнений бесконечна! Мы напишем только часть ее:
   
    § 2. Состояния определенной энергии
    Об электроне в решетке мы теперь уже можем узнать очень многое. Для начала попробуем отыскать состояния определен­ной энергии. Как мы видели в предыдущих главах, это означает, что надо отыскать такой случай, когда все амплитуды меняются с одной частотой, если только они вообще меняются. Мы ищем решение в виде
   
    Комплексное число аn говорит нам о том, какова не зависящая от времени часть амплитуды того, что электроны будут об­наружены возле n-го атома. Если это пробное решение подставить для проверки в уравнения (11.4), то получим
   
    Перед нами бесконечное число уравнений для бесконечного количества неизвестных аn! Ситуация тяжелая!
    Но мы знаем, что надо только взять детерминант... нет, по­годите! Детерминанты хороши, когда уравнений два, три или четыре. Но здесь их очень много, даже бесконечно много, и вряд ли от детерминантов будет толк. Нет, лучше попробовать решать эти уравнения прямо. Во-первых, пронумеруем положения атомов; будем считать, что n-й атом находится в хn, а (n+1)-й— в хn+1. Если расстояние между атомами равно b (как на фиг. 11.1), то хn+1n+b. Взяв начало координат в атоме номер нуль, можно даже получить хn=nb. Уравнение (11.5) можно тогда переписать в виде
   
    а уравнение (11.6) превратится в
   
    Пользуясь тем, что xn+1=xn+b, это выражение можно также записать в виде
   
    Это уравнение немного походит на дифференциальное. Оно говорит, что величина а(х) в точке хn связана с той же физиче­ской величиной в соседних точках хn±b. (Дифференциальное уравнение связывает значения функции в точке с ее значениями в бесконечно близких точках.) Может быть, здесь подойдут методы, которыми мы обычно пользуемся для решения диффе­ренциальных уравнений? Попробуем.
    Решения линейных дифференциальных уравнений с по­стоянными коэффициентами всегда могут быть выражены через экспоненты. Попробуем и здесь то же самое; в качестве пробного решения выберем
   
    Тогда (11.9) обратится в
   
    Сократим на общий множитель
; получим
   
    Два последних члена равняются coskb, так что
    E=E0-2Acoskb. (11.13)
    Мы обнаружили, что при любом выборе постоянной k имеется решение, энергия которого дается этим уравнением. В зависи­мости от k получаются различные возможные энергии, и каж­дая k соответствует отдельному решению. Решений бесконечно много, но это и не удивительно, ведь мы исходим из беско­нечного числа базисных состояний.
    Посмотрим, каков смысл этих решений. Для каждой k уравнение (11.10) дает свои а. Тогда амплитуды обращаются в
   
    причем нужно помнить, что энергия Е также зависит от k в сог­ласии с уравнением (11.13). Множитель
дает пространст­венную зависимость амплитуд. Амплитуды при переходе от атома к атому колеблются.
    При этом имейте в виду, что колебания амплитуды в прост­ранстве комплексны, модуль ее вблизи любого атома один и тот же, а фаза (в данный момент) от атома к атому сдвигается на ikb. Чтобы можно было видеть, что происходит, поставим у каж­дого атома вертикальную черточку, равную вещественной части амплитуды (фиг. 11.2).
   
    Фиг. 11.2. Изменение вещественной части Сn с хn.
    Огибающая этих вертикалей (по­казанная штрихованной линией) является, конечно, косинусо­идой. Мнимая часть Сnэто тоже колеблющаяся функция, но она сдвинута по фазе на 90° , так что квадрат модуля (сумма квадратов вещественной и мнимой частей) у всех С один и тот же.
    Итак, выбирая k, мы получаем стационарное состояние с определенной энергией Е. И в каждом таком состоянии элект­рону одинаково вероятно оказаться около любого из атомов, никаких преимуществ у одного атома перед другим нет. От атома к атому меняется только фаза. Фазы меняются еще и со време­нем. Из (11.14) следует, что вещественная и мнимая части распространяются по кристаллу, как волны, как веществен­ная и мнимая части выражения
   
    Волна может двигаться либо к положительным, либо к отрица­тельным х, смотря по тому, какой знак выбран для k.
    Заметьте, что мы предположили, что поставленное в нашем пробном решении (11.10) число k есть число вещественное. Теперь видно, почему в бесконечной цепочке атомов так и долж­но быть. Пусть k было бы мнимым числом —ik'. Тогда амплитуды аn менялись бы, как
, что означало бы, что амплитуда растет все выше и выше, когда х возрастает, или при k' отрицательном, когда х становится большим отрицательным числом. Такой вид решения был бы вполне хорош, если бы цепочка атомов на чем-то кончалась, но в бесконечной цепи атомов это не может быть фи­зическим решением. Оно привело бы к бесконечным амплиту­дам и, стало быть, к бесконечным вероятностям, которые не могут отражать действительного положения вещей. Позже мы встретимся с примером, когда и у мнимых k есть смысл.
    Соотношение (11.13) между энергией Е и волновым числом k изображено на фиг. 11.3.
   
    Фиг. 11.3. Энергия стационарных состояний как функция параметра k.
    Как следует из этого рисунка, энергия может меняться от Е0-2А при k=0 до Е0 + при k=±p//b. График начерчен для положительных А, при отрица­тельных А кривую пришлось бы перевернуть, но область изменения осталась бы прежней. Существенно то, что в некоторой области, или «полосе» энергий допустимы любые значения энергии; вне полосы энергии быть не может. Из наших пред­положений следует, что если электрон в кристалле находится в стационарном состоянии, энергия его не сможет оказаться вне этой полосы.
    Согласно (11.10), меньшие k отвечают более низким энергети­ческим состояниям Е»Е0-2А. Когда k по величине растет (все равно, в положительную или отрицательную сторону), то энергия сперва растет, а потом при kp//b достигает ма­ксимума, как показано на фиг. 11.3. Для k, больших, чем p//b, энергия опять начала бы убывать. Но такие k рассматривать не стоит, они не приведут к каким-либо новым состояниям, а просто повторяют те состояния, которые уже появлялись при меньших k. Вот как в этом можно убедиться. Рассмотрим со­стояние наинизшей энергии, для которого k=0. Тогда при всех хn коэффициент а (хn) будет один и тот же [см. (11.10)1. Та же самая энергия получилась бы и при k= 2p//b. Тогда из
    (11.10) следовало бы
   
    Но, считая, что начало координат приходится на х0, можно по­ложить хn= nb, и тогда а (хn) превратится в
   
    т. е. состояние, описываемое этими а (хn), физически ничем не будет отличаться от состояний при k=0. Оно не представляет особого решения.
    В качестве другого примера возьмем k=p/4b. Веществен­ная часть а (хn) изображена на фиг. 11.4 кривой 1.
   
    Фиг. 11.4. Пара значений к, представляющих одну и ту же физическую ситуацию. Кривая 1—для k=p/4b, кривая 2 —для k=7p/4b.
    Если бы k было в семь раз больше (k=7p//4b), то вещественная часть а (хn) менялась бы так, как показано на кривой 2. (Сама коси­нусоида смысла не имеет, важны только ее значения в точках хn.
    Кривые нужны просто для того, чтобы было видно, как все меняется.) Вы видите, что оба значения k во всех хn дают одинаковые амплитуды.
    Вывод из всего этого состоит в том, что все возможные реше­ния нашей задачи получатся, если взять k только из некоторой ограниченной области. Мы выберем область от -p/b до +p/b (она показана на фиг. 11.3). В этой области энергия стационар­ных состояний с ростом абсолютной величины k возрастает.
    Еще одно побочное замечание о том, с чем было бы забавно повозиться. Представьте, что электрон может не только пере­прыгивать к ближайшим соседям с амплитудой iA/h, но имеет еще возможность одним махом перепрыгивать и к следующим за ними соседям с некоторой другой амплитудой iB/h. Вы опять обнаружите, что решение можно искать в форме ап=eikx, этот тип решений является универсальным. Вы также увидите, что стационарные состояния с волновым числом k имеют энер­гию E0-2Acos kb-2Bcos2kb. Это означает, что форма кривой Е как функции k не универсальна, а зависит от тех частных до­пущений, при которых решается задача. Это не обязательно косинусоида, и она даже не обязательно симметрична относи­тельно горизонтальной оси. Но зато всегда верно, что кривая вне интервала (-p/b, p/b) повторяется, так что заботиться о других значениях k не нужно.
    Посмотрим еще внимательнее на то, что происходит при малых k, когда вариации амплитуд между одним хn и соседним очень маленькие. Будем отсчитывать энергию от такого уровня, чтобы было Е0=2А; тогда минимум кривой фиг. 11.3 придется на нуль энергии. Для достаточно малых k можно написать
   
    и энергия (11.13) превратится в
   
    Получается, что энергия состояния пропорциональна квадрату волнового числа, описывающего пространственные вариации
    амплитуд Сn.
    § 3. Состояния, зависящие от времени
    В этом параграфе мы хотим подробнее обсудить поведение состояний в одномерной решетке. Если для электрона амплитуда того, что он окажется в хn, равна Сn, то вероятность найти его там будет |Сn|2. Для стационарных состояний, описанных уравнением (11.12), эта вероятность при всех хn одна и та же и со временем не меняется. Как же отобразить такое положение вещей, кото­рое грубо можно было бы описать, сказав, что электрон определенной энергии сосредоточен в определенной области, так что более вероятно найти его в каком-то одном месте, чем в другом? Этого можно добиться суперпозицией нескольких решений, похожих на (11.12), но со слегка различными значениями k и, следовательно, с различными энергиями. Тогда, по крайней мере при t=0, амплитуда Сn вследствие интерференции раз­личных слагаемых будет зависеть от местоположения, в точности так же, как получаются биения, когда имеется смесь волн раз­ной длины [см. гл. 48 (вып. 4)]. Значит, можно составить такой «волновой пакет», что в нем будет преобладать волновое число k0, но будут присутствовать и другие волновые числа, близкие к k0.
    В нашей суперпозиции стационарных состояний амплитуды с разными k будут представлять состояния со слегка различ­ными энергиями и, стало быть, со слегка различными частотами; интерференционная картина суммарного Сn поэтому тоже будет меняться во времени, возникнет картина «биений». Как мы ви­дели в гл. 48 (вып. 4), пики биений [места, где (xn)|2 наи­большие] с течением времени начнут двигаться по х; скорость их движения мы назвали «групповой». Мы нашли, что эта груп­повая скорость связана с зависимостью k от частоты формулой
   
    все это в равной мере относится и к нашему случаю. Состояние электрона, имеющее вид «скопления», т. е. состояние, для кото­рого Сn меняется в пространстве так, как у волнового пакета на фиг. 11.5, будет двигаться вдоль нашего одномерного «кристалла» с быстротой v, рапной dw/dk, где w=E/h.
   
    Фиг. 11.5. Вещественная часть С(хn) как функция х для суперпозиции нескольких состояний с близкими энергиями.
    Подстав­ляя (11.16) вместо Е, получаем
   
    Иными словами, электроны движутся по кристаллу с быстротой, пропорциональной самому характерному k. Тогда, согласно (11.16), энергия такого электрона пропорциональна квадрату его скорости, он ведет себя подобно классической частице. Пока мы рассматриваем все в столь крупном масштабе, что никаких тонкостей строения разглядеть не можем, наша квантовомеханическая картина приводит к тем же результатам, что и клас­сическая физика.
    В самом деле, если из (11.18) найти k и подставить его в (11.16), то получится
   
    где mэфф — постоянная. Избыточная «энергия движения» элект­рона в пакете зависит от скорости в точности так же, как и у классической частицы. Постоянная mэфф, именуемая «эффектив­ной массой», дается выражением
   
    Заметьте еще, что можно написать
   
    Если мы решим назвать mэффv «импульсом», то этот импульс будет связан с волновым числом k так же, как и у свободной частицы.
    Не забывайте, что mэфф ничего общего не имеет с реальной массой электрона. Она может быть совсем другой, хотя следует сказать, что в реальных кристаллах часто случается, что ее порядок величины оказывается примерно таким же (в 2 или, скажем, в 20 раз больше, чем масса электрона в пустом про­странстве).
    Мы только что с вами раскрыли поразительную тайну — как это электрон в кристалле (например, пущенный в германий добавочный электрон) может пронестись через весь кристалл, может лететь по нему совершенно свободно, даже если ему при­ходится сталкиваться со всеми атомами. Это получается оттого, что его амплитуды, перетекая с одного атома на другой, прокладывают ему путь через кристалл. Вот отчего твердое тело может проводить электричество.
    § 4. Электрон в трехмерной решетке
    Еще немного о том, как можно применить те же идеи, чтобы понять, что происходит с электроном в трех измерениях. Резуль­таты оказываются очень похожими. Пусть имеется прямоуголь­ная решетка атомов с расстояниями а, b, с в трех направлениях. (Если вам больше по душе кубическая решетка, примите все расстояния равными друг другу.) Предположим также, что ам­плитуда прыжка к соседу в направлении х есть iAx/h; ампли­туда прыжка в направлении у есть iAy/h, а амплитуда прыжка в направлении z есть iAz/h. Как же описать базисные состоя­ния? Как и в одномерном случае, одно базисное состояние — это когда электрон находится близ атома с координатами х, у, z, где (х, у, z) — одна из точек решетки. Если выбрать начало координат в одном из атомов, то все эти точки придутся на
    х=nха, y=nyb и z=nzс,
    где nх, ny, nzтри целых числа. Вместо того чтобы ставить при х, у и z их номера, будем просто писать х, у, z, имея в виду, что они принимают лишь такие значения, которые бывают у то­чек решетки. Итак, базисное состояние изображается символом | электрон в х, у, z>, а амплитуда того, что электрон в неко­тором состоянии |y> окажется в этом базисном состоянии, есть
    С (х, у, z)=< электрон в х, у, z |y>.
    Как и прежде, амплитуды С (х, у, z) могут меняться во вре­мени. При наших предположениях гамильтоновы уравнения обязаны выглядеть следующим образом:
   
    Хоть это и выглядит громоздко, но вы сразу, конечно, поймете, откуда взялось каждое слагаемое.
    Опять попробуем найти стационарное состояние, в котором все С меняются со временем одинаково. И снова решение есть экспонента
   
    Если вы подставите это в (11.22), то увидите, что оно вполне подойдет, если только энергия Е будет связана с kx, ky и kz следующим образом:
   
    Теперь энергия зависит от трех волновых чисел kx, ky, kz, которые, кстати, есть компоненты трехмерного вектора k.
    И действительно, (11.23) можно переписать в векторных обо­значениях:
   
    Амплитуда меняется как комплексная плоская волна, которая движется в трехмерном пространстве в направлении k с волно­вым числом k=(k2x+k2y+ k2z)1/2.
    Энергия, связываемая с этими стационарными состояниями, зависит от трех компонент k сложным образом, подчиняясь уравнению (11.24). Характер изменения Е зависит от относи­тельных знаков и величин Ах,Ау и Аz. Если вся эта тройка положительна и если нас интересуют лишь маленькие k, то зависимость оказывается сравнительно простой.
    Разлагая косинус, как и раньше [см. (11.16)], мы теперь придем к
   
    В простой кубической решетке с расстоянием а между узлами следует ожидать, что и Ах, и Аy, и Аг будут все равны друг другу (скажем, равны А), так что получилось бы
   
    или
   
    А это как раз совпадает с (11.16). Повторяя те же рассуждения, что и тогда, мы пришли бы к заключению, что электронный пакет в трех измерениях (составленный путем суперпозиции множества состояний с почти одинаковыми энергиями) также движется на манер классической частицы, обладающей некото­рой эффективной массой.
    В кристалле не с кубической, а с более низкой симметрией (или даже в кубическом кристалле, но таком, в котором состоя­ние электрона около атома несимметрично) три коэффициента Ах, Аy и Az различны. Тогда «эффективная масса» элект­рона, сосредоточенного в узкой области, зависит от направле­ния его движения. Может, например, оказаться, что у него раз­ная инерция при движении в направлении х и при движении в направлении у. (Детали такого положения вещей иногда описываются с помощью «тензора эффективной массы».)
    § 5. Другие состояния в решетке
    Согласно (11.24), состояния электрона, о которых мы гово­рили, могут обладать энергиями только в некоторой энергети­ческой «полосе», простирающейся от наименьшей энергии
    Е0-2яуг)
    до наибольшей
    E0+2(Ax+Ay+Az).
    Другие энергии тоже возможны, но они принадлежат к другому классу состояний электрона. Для тех состояний, о которых говорилось раньше, мы выбирали такие базисные состояния, когда электрон в атоме кристалла находился в некотором определенном состоянии, скажем в состоянии наинизшей энергии.
    Если у вас есть атом в пустом пространстве и вы добавляете к нему электрон, чтобы получился ион, то этот ион можно обра­зовать многими способами. Электрон может расположиться так, чтобы образовать состояние наинизшей энергии, или так, чтобы образовать то или иное из многих возможных «возбуж­денных состояний» иона, каждое с определенной энергией, ко­торая превосходит наинизшее значение. То же может случиться и в кристалле. Допустим, что энергия Е0, которой мы пользо­вались выше, соответствует базисным состояниям, представляю­щим собой ионы с наинизшей возможной энергией. Но можно также вообразить новую совокупность базисных состояний, в которых электрон по-иному располагается возле n-го атома: он образует одно из возбужденных состояний иона, так что энергия Е0 теперь уже становится чуть повыше. Как и раньше, имеется некоторая амплитуда А (отличная от прежней) того, что электрон перепрыгнет из своего возбужденного состояния близ одного атома в такое же возбужденное состояние подле сосед­него атома. И весь анализ проходит, как раньше; мы обнаружим полосу возможных энергий, сосредоточенных вокруг некото­рой высшей энергии. Вообще говоря, таких полос может быть много и каждая будет отвечать своему уровню возбуждения.
    Мыслимы и другие возможности. Может существовать неко­торая амплитуда того, что электрон перепрыгнет из возбужден­ного положения возле одного атома в невозбужденное положе­ние близ следующего атома. (Это называется взаимодействием между полосами.) Математическая теория становится все слож­нее и сложнее по мере того, как вы принимаете во внимание все больше и больше полос и добавляете все больше и больше коэф­фициентов просачивания между различными состояниями. Ни­каких новых идей не нужно; но уравнения, как мы видели из нашего простого примера, сильно разрастаются.
    Следует еще заметить, что о различных коэффициентах, та­ких, как появляющаяся в теории амплитуда А, сказать можно лишь немногое. Их, как правило, очень трудно подсчитать, и в практических случаях об этих параметрах теоретически бывает очень мало известно; в тех или иных реальных случаях приходится их значения брать из опыта.
    Бывают и другие случаи, в которых вся физика и вся мате­матика почти в точности совпадают с тем, что мы обнаружили для электрона, движущегося по кристаллу, но в которых дви­жущийся «объект» совсем не тот. Представим, например, что нашим исходным кристаллом (или, лучше сказать, линейной решеткой) была цепочка нейтральных атомов, у каждого из которых связь с внешним электроном очень слаба. Теперь во­образим, что мы убрали один электрон. У какого из атомов? Пусть Сn есть амплитуда того, что электрон исчез у атома, стоящего в точке хn. Вообще говоря, имеется какая-то ампли­туда А того, что электрон от соседнего атома, скажем от (n-1)-го, перепрыгнет к n-му, оставив свой (n-1)-й атом без электрона. Это все равно, что сказать, что у «нехватки электро­на» имеется амплитуда А того, что она переберется от n-го атома к (n-1)-му. Легко видеть, что уравнения окажутся такими же, как и раньше, но, конечно, сами А не обязательно останутся прежними. Мы опять придем к тем же формулам для уровней энергии, для «волн» вероятности, которые бегут по кристаллу с групповой скоростью (11.18), для эффективной массы и т. д. Только теперь эти волны описывают поведение недостающего электрона или, как его называют, «дырки». Можно убедиться, что заряд этой частицы будет казаться положительным. В сле­дующей главе мы немного подробнее расскажем об этих дырках. Другой пример. Представим себе цепочку нейтральных атомов, один из которых был приведен в возбужденное состояние, т. е. с более высокой, чем у нормального основного состояния, энергией. Пусть Сnамплитуда того, что n-й атом возбужден. Он может взаимодействовать с соседним атомом, передавая ему свой избыток энергии и возвращаясь в основное состояние. Обозначим амплитуду этого процесса iA/h. Вы видите, что опять повторяется та же математика. Но теперь то, что движется, называется экситоном. Оно ведет себя как нейтральная «части­ца», которая движется через кристалл и несет с собой энергию возбуждения. Существование такого движения можно предпо­лагать в некоторых биологических процессах, таких, как зре­ние или фотосинтез. Была высказана догадка, что поглощение света в сетчатке создает «экситон», который движется через некоторую периодическую структуру [такую, как слои палочек, описанные в гл. 36 (вып. 3); см. там фиг. 36.5] и аккумулирует­ся на некоторых специальных станциях, где эта энергия ис­пользуется для возбуждения химической реакции.
    § 6. Рассеяние па нерегулярностях решетки
    Теперь мы хотим рассмотреть одиночный электрон в не­идеальном кристалле. Наш первоначальный анализ привел к выводу, что у идеальных кристаллов и проводимость идеальна, что электроны могут скользить по кристаллу, как по вакууму, без трения. Одной из самых важных причин, способных прекратить вечное движение электрона, является несовершенство кристалла, какая-то нерегулярность в нем. Допустим, что где-то в кристалле не хватает одного атома, или предположим, что кто-то поставил на место, предназначенное для какого-то атома, совсем не тот атом, какой положено, так что в этом месте все совсем не так, как в прочих местах. Скажем, другая энергия Е0 или другая амплитуда А. Как тогда можно будет описать все происходящее?
    Для определенности вернемся к одномерному случаю и до­пустим, что атом номер «нуль» — это атом «загрязнения», «примеси» и у него совсем не такая энергия Е0, как у других атомов. Обозначим эту энергию Е0+F. Что же происходит? Для электрона, который достиг атома «нуль», есть какая-то вероятность того, что он рассеется назад. Если волновой пакет, мчась по кристаллу, достигает места, где все немного иначе, то часть его будет продолжать лететь вперед, а другая отскочит назад. Анализировать такой случай, пользуясь вол­новым пакетом, очень трудно, потому что все меняется во вре­мени. С решениями в виде установившихся состояний работать много легче. Мы обратимся поэтому к стационарным состоя­ниям; мы увидим, что их можно составить из непрерывных волн, состоящих из двух частей — пробегающей и отраженной. В случае трех измерений мы бы назвали отраженную часть рас­сеянной волной, потому что она разбегалась бы во все стороны.
    Исходим из системы уравнений, похожей на (11.6), за одним исключением: уравнение при n=0 не похоже на остальные. Пятерка уравнений при n=-2,-1, 0, +1 и +2 выглядит так:
   
    Конечно, будут и другие уравнения при |n|>2. Они будут выгля­деть так же, как (11.6).
    Нам полагалось бы на самом деле для общности писать разные А, в зависимости от того, прыгает ли электрон к атому «нуль» или же от атома «нуль», но главные черты того, что происходит, вы увидите уже из упрощенного примера, когда все А равны.
    Уравнение (11.10) по-прежнему будет служить решением Для всех уравнений, кроме уравнения для атома «нуль» (для него оно не годится). Нам нужно другое решение; соорудим его так. Уравнение (11.10) представляет волну, бегущую в поло­жительном направлении х. Волна, бегущая в отрицательном направлении х, тоже подошла бы в качестве решения. Мы бы написали
   
    Самое общее решение уравнения (11.6) представляло бы собой сочетание волны вперед и волны назад:
   
    Это решение представляет комплексную волну с амплитудой а, бегущую в направлении +х, и волну с амплитудой b, бегущую в направлении -х.
    Теперь бросим взгляд на систему уравнений нашей новой задачи: на (11.28) плюс такие же уравнения для остальных атомов. Уравнения, куда входят аn с nЈ-1, решаются форму­лой (11.29) при условии, что k оказывается связанным с Е и постоянной решетки b соотношением
    E=E0-2Acoskb. (11.30)
    Физический смысл этого таков: «падающая» волна с амплитудой a приближается к атому «нуль» (или «рассеивателю») слева, а «рассеянная» или «отраженная» волна с амплитудой b бежит обратно, т. е. налево. Не теряя общности, можно положить амплитуду a падающей волны равной единице. Тогда ампли­туда b будет, вообще говоря, комплексным числом.
    То же самое можно сказать и о решениях аn при nі1. Коэф­фициенты могут стать иными, так что следовало бы писать
   
    Здесь g — амплитуда волны, бегущей направо, а d — амплитуда волны, приходящей справа. Мы хотим рассмотреть такой физический случай, когда вначале волна бежит только слева, и за рассеивателем (или атомом загрязнения) имеется только «прошедшая» волна. Будем поэтому искать решение, в котором d=0. Стало быть, мы попытаемся удовлетворить всем уравне­ниям для аn, кроме средней тройки в (11.28), с помощью сле­дующих пробных решений:
   
    Положение, о котором идет речь, иллюстрируется фиг. 11.6.
   
    Фиг. 11.6. Волны в одномерной решетке а одним «примесным» атомом в n=0.
    Используя формулы (11.32) для а-1 и а+1, можно из сред­ней тройки уравнений (11.28) найти а0 и два коэффициента b и g. Таким образом, мы найдем полное решение. Надо решить три уравнения (полагая xn=nb):
   
    Вспомните, что (11.30) выражает E через k. Подставьте это значение Е в уравнения и учтите, что
   
    тогда из первого уравнения получится
    a0=1+b, (11.34)
    а из третьего
    a0=g, (11.35)
    что согласуется друг с другом только тогда, когда
    g=1+b. (11.36)
    Это уравнение сообщает нам, что прошедшая волна (g) — это просто исходная падающая волна (1) плюс добавочная волна (b), равная отраженной. Это не всегда так, но при рассеянии на одном только атоме оказывается, что это так. Если бы у вас была целая группа атомов примеси, то величина, добавляемая к волне, бегущей вперед, не обязательно вышла бы такой же, как у отраженной волны.
    Амплитуду b отраженной волны мы можем получить из среднего из уравнений (11.33); окажется, что
   
    Мы получили полное решение для решетки с одним необычным
    атомом.
    Вас могло удивить, отчего это проходящая волна оказа­лась «выше», чем падавшая, если судить по уравнению (11.34). Но вспомните, что b и gчисла комплексные и что число частиц в волне (или, лучше сказать, вероятность обнаружить частицу) пропорционально квадрату модуля амплитуды. В дей­ствительности «сохранение числа электронов» будет выполнено лишь при условии
    |b|2+|g|2=1. (11.38)
    Попробуйте показать, что в нашем решении так оно и есть.
    § 7. Захват нерегулярностями решетки
    Бывает и другой интересный случай. Он может возникнуть, когда F число отрицательное. Если энергия электрона в атоме примеси (при n=0) ниже, чем где-либо в другом месте, то электрон может оказаться захваченным этим атомом. Иначе говоря, если Е0+F ниже самого низа полосы (меньше, чем Е0-2А), тогда электрон может оказаться «пойманным» в со­стояние с Е<Е0-2А. Из всего того, что мы делали до сих пор, такое решение не могло получиться. Но это решение можно получить, если в пробном решении (11.15) разрешить k прини­мать мнимые значения. Положим k = ix. Для n<0 и для n>0 у нас опять будут разные решения. Для n>0 допустимое решение могло бы иметь вид
   
    В экспоненте мы выбрали плюс; иначе амплитуда при больших отрицательных n стала бы бесконечно большой. Точно так же допустимое решение для n>0 имело бы вид
   
    Если подставить эти пробные решения в (11.28), то они удов­летворят всем уравнениям, кроме средней тройки, при условии, что
   
    А раз сумма этих двух экспонент всегда больше 2, то эта энергия оказывается за пределами (ниже) обычной полосы. Это-то мы и искали. Оставшейся тройке уравнений (11.28) удастся удовлетворить, если взять с = с' и если к выбрать так, чтобы
   
    Сопоставив это уравнение с (11.41), найдем энергию захвачен­ного электрона
   
    Захваченный электрон обладает одной-единственной энергией (а не целой полосой); она расположена несколько ниже полосы проводимости.
    Заметьте, что амплитуды (11.39) и (11.40) не утверждают, что пойманный электрон сидит прямо в атоме примеси. Вероят­ность обнаружить его у одного из соседних атомов дается квад­ратом этих амплитуд. Изменение ее показано столбиками на фиг. 11.7 (при каком-то наборе параметров).
   
    Фиг. 11.7. Относительные вероятности обнаружить захваченный электрон в атом­ных узлах поблизости от примесного ато­ма — ловушки.
    С наибольшей вероятностью электрон можно встретить близ атома примеси. Для соседних атомов вероятность спадает экспоненциально по мере удаления от атома примеси. Это новый пример «проникно­вения через барьер». С точки зрения классической физики элек­трону не хватило бы энергии, чтобы удалиться от энергетиче­ской «дырки» близ центра захвата. Но квантовомеханически он может куда-то недалеко просочиться.
    § 8. Амплитуды рассеяния и связанные состояния
    Наш последний пример может быть использован, чтобы проиллюстрировать одну вещь, которая в наши дни очень полезна для физики частиц высокой энергии. Речь идет о связи между амплитудами рассеяния и связанными состояниями. Положим, мы открыли (при помощи опытов и теоретического анализа), как пионы рассеиваются на протонах. Затем откры­вается новая частица и кому-то хочется узнать, не является ли она просто комбинацией из пиона и протона, объединенных в одно связанное состояние (по аналогии с тем, как электрон, будучи связан с протоном, образует атом водорода)? Под связанным состоянием мы подразумеваем комбинацию, энергия которой ниже, чем у пары свободных частиц.
    Существует общая теория, согласно которой, если ампли­туду рассеяния проэкстраполировать (или, на математическом языке, «аналитически продолжить») на энергии вне разрешен­ной зоны, то при такой энергии, при которой амплитуда стано­вится бесконечной, возникнет связанное состояние. Физическая причина этого такова. Связанное состояние — это когда имеют­ся только волны, стоящие близ некоторой точки; это состояние не порождается никакой начальной волной, оно просто сущест­вует само по себе. Относительная пропорция между так называе­мыми «рассеянными», или созданными, волнами и волнами, «посылаемыми внутрь», равна бесконечности. Эту идею мы мо­жем проверить на нашем примере. Выразим нашу рассеянную амплитуду (11.37) прямо через энергию Е рассеявшейся частицы (а не через k). Уравнение (11.30) можно переписать в виде
   
    поэтому рассеянная амплитуда равна
   
    Из вывода формулы следует, что применять ее можно только для реальных состояний — для тех, энергия которых попадает в энергетическую полосу, Е=Е0+2А. Но представьте, что мы об этом забыли и расширили нашу формулу на «нефизические» области энергии, где | Е-Е0|>2A. Для этих нефизических областей можно написать
   
    Тогда «амплитуда рассеяния» (что бы это выражение ни зна­чило) равна
   
    Теперь задаем вопрос: существует ли такая энергия Е, при которой b становится бесконечным (т. е. при которой выраже­ние для b имеет «полюс»)? Да, существует, если только F отри­цательно; тогда знаменатель (11.45) обратится в нуль при
   
    т. е. при
   
    При знаке минус получается как раз то, что мы получили в (11.43) для энергии захваченного электрона.
    А как быть со знаком плюс? Он приводит к энергии выше разрешенной полосы энергий. И действительно, существует другое связанное состояние, которое мы пропустили, решая (11.28). Найти энергию и амплитуды аn для этого связанного состояния вам предоставляется самим.
    Одним из ключей (причем самых надежных) к разгадке экспе­риментальных наблюдений над новыми странными частицами служит это соотношение между законом рассеяния и связан­ными состояниями.
    * Знак корня, который здесь следовало поставить, это технический вопрос, связанный с допустимыми знаками к в (11.39) и (11.40). Мы не будем здесь вдаваться в подробности.
    * Только не старайтесь сделать пакет чересчур узким.

    Г л а в a 12 ПОЛУПРОВОДНИКИ
    § 1. Электроны и дырки в полупроводниках
    § 2. Примесные полупроводники
    § 3. Эффект Холла
    § 4. Переходы между полупроводни­ками
    § 5. Выпрямление на полупровод­никовом переходе
    § 6. Транзистор
    § 1. Электроны и дырки в полупроводниках
    Одним из самых замечательных и волную­щих открытий последних лет явилось приме­нение физики твердого тела к технической разработке ряда электрических устройств, таких, как транзисторы. Изучение полупро­водников привело к открытию их полезных свойств и ко множеству практических приме­нений. В этой области все меняется так быстро, что рассказанное вам сегодня может через год оказаться уже неверным или, во всяком случае, неполным. И совершенно ясно, что, подробнее изучив такие вещества, мы со временем сумеем осуществить куда более удивительные вещи. Материал этой главы вам не понадобится для понимания следующих глав, но вам, вероятно, будет интересно убедиться, что по крайней мере кое-что из того, что вы изучили, как-то все же связано с практическим делом.
    Полупроводников известно немало, но мы ограничимся теми, которые больше всего при­меняются сегодня в технике. К тому же они и изучены лучше других, так что разобравшись в них, мы до какой-то степени поймем и многие другие. Наиболее широко применяемые в на­стоящее время полупроводниковые вещества это кремний и германий. Эти элементы кристал­лизуются в решетке алмазного типа — в такой кубической структуре, в которой атомы обла­дают четверной (тетраэдральной) связью со своими ближайшими соседями. При очень низ­ких температурах (вблизи абсолютного нуля) они являются изоляторами, хотя при комнатной температуре они немного проводят электричество. Это не металлы; их называют полупроводниками.
    Если каким-то образом в кристалл кремния или германия при низкой температуре мы введем добавочный электрон, то возникнет то, что описано в предыдущей главе. Такой электрон начнет блуждать по кристаллу, перепрыгивая с места, где стоит один атом, на место, где стоит другой. Мы рассмотрели только поведение атома в прямоугольной решетке, а для реаль­ной решетки кремния или германия уравнения были бы дру­гими. Но все существенное может стать ясным уже из резуль­татов для прямоугольной решетки.
    Как мы видели в гл. И, у этих электронов энергии могут находиться только в определенной полосе значений, называемой зоной проводимости. В этой зоне энергия связана с волновым числом k амплитуды вероятности С [см. (11.24)1 формулой
   
    Разные A это амплитуды прыжков в направлениях х, у и z, а а, b, с — это постоянные решетки (интервалы между узлами) в этих направлениях.
    Для энергий возле дна зоны формулу (12.1) можно прибли­зительно записать так:
   
    (см. гл. 11, § 4).
    Если нас интересует движение электрона в некотором опре­деленном направлении, так что отношение компонент k все время одно и то же, то энергия есть квадратичная функция волнового числа и, значит, импульса электрона. Можно напи­сать
   
    где a — некоторая постоянная, и начертить график зависимости Е от k (фиг. 12.1).
   
    Фиг. 12.1. Энергетическая диаг­рамма для электрона в кристалле изолятора.
    Такой график мы будем называть «энергетиче­ской диаграммой». Электрон в определенном состоянии энергии и импульса можно на таком графике изобразить точкой (S на рисунке).
    Мы уже упоминали в гл. 11, что такое же положение вещей возникнет, если мы уберем электрон из нейтрального изолятора. Тогда на это место сможет перепрыгнуть электрон от соседнего атома. Он заполнит «дырку», а сам оставит на том месте, где стоял, новую «дырку». Такое поведение мы можем описать, задав амплитуду того, что дырка окажется возле данного опре­деленного атома, и говоря, что дырка может прыгать от атома к атому. (Причем ясно, что амплитуда А того, что дырка пере­прыгивает от атома а к атому b, в точности равна амплитуде того, что электрон от атома b прыгает в дырку от атома а.)
    Математика для дырки такая же, как для добавочного элект­рона, и мы опять обнаруживаем, что энергия дырки связана с ее волновым числом уравнением, в точности совпадающим с (12.1) и (12.2), но, конечно, с другими численными значениями амплитуд Ах, Ay и Аz. У дырки тоже есть энергия, связанная с волновым числом ее амплитуд вероятности. Энергия ее лежит в некоторой ограниченной зоне и близ дна зоны квадратично меняется с ростом волнового числа (или импульса) так же, как на фиг. 12.1. Повторяя наши рассуждения гл. 11, § 3, мы обна­ружим, что дырка тоже ведет себя как классическая частица с какой-то определенной эффективной массой, с той только раз­ницей, что в некубических кристаллах масса зависит от направ­ления движения. Итак, дырка напоминает частицу с положи­тельным зарядом, движущуюся сквозь кристалл. Заряд ча­стицы-дырки положителен, потому что она сосредоточена в том месте, где нет электрона; и когда она движется в какую-то сто­рону, то на самом деле это в обратную сторону движутся электроны.
    Если в нейтральный кристалл поместить несколько электро­нов, то их движение будет очень похоже на движение атомов в газе, находящемся под низким давлением. Если их не слишком много, их взаимодействием можно будет пренебречь. Если затем приложить к кристаллу электрическое поле, то электроны нач­нут двигаться и потечет электрический ток. В принципе они должны очутиться на краю кристалла и, если там имеется ме­таллический электрод, перейти на него, оставив кристалл нейт­ральным.
    Точно так же в кристалл можно было бы ввести множество дырок. Они бы начали повсюду бродить как попало. Если при­ложить электрическое поле, то они потекут к отрицательному электроду и затем их можно было бы «снять» с него, что и про­исходит, когда их нейтрализуют электроны с металлического электрода.
    Электроны и дырки могут оказаться в кристалле одновре­менно. Если их опять не очень много, то странствовать они будут независимо. В электрическом поле все они будут давать свой вклад в общий ток. По очевидной причине электроны назы­вают отрицательными носителями, а дырки — положитель­ными носителями.
    До сих пор мы считали, что электроны внесены в кристалл извне или (для образования дырки) удалены из него. Но можно также «создать» пару электрон—дырка, удалив из нейтрального атома связанный электрон и поместив его в том же кристалле на некотором расстоянии. Тогда у нас получатся свободный электрон и свободная дырка, и движение их будет таким, как мы описали.
    Энергия, необходимая для того, чтобы поместить электрон в состояние S (мы говорим: чтобы «создать» состояние S),— это энергия Е-, показанная на фиг. 12.2.
   
    Фиг. 12.2, Энергия Е, требуемая для «рождения» свободного
    электрона.
    Это некоторая энергия,
    превышающая Е-мин. Энергия, необходимая для того, чтобы «создать» дырку в каком-то состоянии S',— это энергия Е+ (фиг. 12.3), которая на какую-то долю выше, чем Е (=Е+мин).
   
    Фиг. 12.3. Энергия Е+ , тре­буемая для «рождения» дырки в состоянии S'.
    А чтобы создать пару в со­стояниях S и S', потребуется просто энергия Е-+Е+.
    Образование пар — это, как мы увидим позже, очень частый процесс, и многие люди предпочитают поме­щать фиг. 12.2 и 12.3 на один чертеж, причем энергию дырок откладывают вниз, хотя, конечно, эта энергия положительна. На фиг. 12.4 мы объединили эти два гра­фика.
   
    Фиг. 12.4. Энергетические диаграммы для электрона и дырки.
    Преимущества такого графика в том, что энергия Eпары-+ , требуемая для образования пары (электрона в S и дырки в S ), дается попросту расстоянием по вертикали между S и S', как показано на фиг. 12.4. Наименьшая энергия, требуемая для образования пары, называется энерге­тической шириной, или шириной щели, и равняется
    е-мин+E+мин.
    Иногда вам может встретиться и диаграмма попроще. Ее рисуют те, кому не интересна переменная k, называя ее диа­граммой энергетических уровней. Эта диаграмма (она показана на фиг. 12.5) просто указывает допустимые энергии у электро­нов и дырок.
   
    Фиг. 12.5. Диаграмма энер­гетических уровней для электронов и дырок.
    Как создается пара электрон—дырка? Есть несколько спо­собов. Например, световые фотоны (или рентгеновские лучи)
    могут поглотиться и обра­зовать пару, если только энергия фотона больше энергетической ширины. Быстрота образования пар пропорциональна интен­сивности света. Если при­жать к торцам кристалла два электрода и прило­жить «смещающее» напря­жение, то электроны и дырки притянутся к элек­тродам. Ток в цепи будет пропорционален силе све­та. Этот механизм ответствен за явление фотопроводимости и за работу фотоэлементов. Пары электрон — дырка могут образоваться также части­цами высоких энергий. Когда быстро движущаяся заряженная частица (например, протон или пион с энергией в десятки и сотни Мэв) пролетает сквозь кристалл, ее электрическое поле может вырвать электроны из их связанных состояний, образуя пары электрон — дырка. Подобные явления сотнями и тыся­чами происходят на каждом миллиметре следа. После того как частица пройдет, можно собрать носители и тем самым вызвать электрический импульс. Перед вами механизм того, что разы­грывается в полупроводниковых счетчиках, в последнее время используемых в опытах по ядерной физике. Для таких счетчи­ков полупроводники не нужны, их можно изготовлять и из кристаллических изоляторов. Так и было на самом деле: первый из таких счетчиков был изготовлен из алмаза, который при ком­натных температурах является изолятором. Но нужны очень чистые кристаллы, если мы хотим, чтобы электроны и дырки
    I могли добираться до электродов, не боясь захвата. Потому и используются кремний и германий, что образцы этих полупро­водников разумных размеров (порядка сантиметра) можно по­лучать большой чистоты.
    До сих пор мы касались только свойств полупроводниковых кристаллов при температурах около абсолютного нуля. При любой ненулевой температуре имеется еще другой механизм создания пар электрон — дырка. Энергией пару может снаб­дить тепловая энергия кристалла. Тепловые колебания кристал­ла могут передавать паре свою энергию, вызывая «самопроиз­вольное» рождение пар.
    Вероятность (в единицу времени) того, что энергия, дости­гающая величины энергетической щели Eщели, сосредоточится в месте расположения одного из атомов, пропорциональна ехр(-Ещеяи/kТ), где Т—температура, а kпостоянная Больц­мана [см. гл. 40 (вып. 4)]. Вблизи абсолютного нуля вероятность эта мало заметна, но по мере роста температуры вероятность образования таких пар возрастает. Образование пар при любой конечной температуре должно продолжаться без конца, давая все время с постоянной скоростью все новые и новые положи­тельные и отрицательные носители. Конечно, на самом деле этого не будет, потому что через мгновение электроны случайно снова повстречаются с дырками, электрон скатится в дырку, а освобожденная энергия перейдет к решетке. Мы скажем, что электрон с дыркой «аннигилировали». Имеется определенная вероятность того, что дырка встретится с электроном и оба они друг друга уничтожат.
    Если количество электронов в единице объема есть Nn (n означает негативных, или отрицательных, носителей), а плот­ность положительных (позитивных) носителей Np, то вероят­ность того, что за единицу времени электрон с дыркой встре­тятся и проаннигилируют, пропорциональна произведению NnNp. При равновесии эта скорость должна равняться ско­рости, с какой образуются пары. Стало быть, при равновесии произведение NnNp должно равняться произведению некото­рой постоянной на больцмановский множитель
   
    Говоря о постоянной, мы имеем в виду ее примерное постоянство. Более полная теория, учитывающая различные детали того, как электроны с дырками «находят» друг друга, свидетельствует, что «постоянная» слегка зависит и от температуры; но главная зависимость от температуры лежит все же в экспоненте.
    Возьмем, например, чистое вещество, первоначально бывшее нейтральным. При конечной температуре можно ожидать, что число положительных и отрицательных носителей будет одно и то же, Nn = Nр. Значит, каждое из этих чисел должно с температурой меняться как
. Изменение мно­гих свойств полупроводника (например, его проводимости) определяется главным образом экспоненциальным множителем, потому что все другие факторы намного слабее зависят от тем­пературы. Ширина щели для германия примерно равна 0,72 эв, а для кремния 1,1 эв.
    При комнатной температуре kТ составляет около 1/40 эв. При таких температурах уже есть достаточно дырок и электро­нов чтобы обеспечить заметную проводимость, тогда как, ска­жем, при 30°К (одной десятой комнатной температуры) прово­димость незаметна. Ширина щели у алмаза равна 6—7 эв, по­этому при комнатной температуре алмаз — хороший изолятор.
    § 2. Примесные полупроводники
    До сих пор мы говорили только о двух путях введения доба­вочных электронов в кристаллическую решетку, которая во всем остальном совершенно идеальна. Один путь — это впрыс­нуть электрон от внешнего источника, а другой — выбить связанный электрон из нейтрального атома, сотворив одновре­менно и электрон и дырку. Но можно внедрить электроны в зону проводимости кристалла совершенно иным способом. Представим себе кристалл германия, в котором один из атомов германия заменен атомом мышьяка. У атомов германия валент­ность равна 4, и кристаллическая структура контролируется четырьмя валентными электронами. А у мышьяка валентность равна 5. И вот оказывается, что отдельный атом мышьяка в состоянии засесть в решетке германия (потому что габариты у него как раз такие, как надо), но при этом он будет вынужден действовать как четырехвалентный атом, тратя четыре валент­ных электрона из своего запаса на создание кристаллических связей и отбрасывая пятый. Этот лишний электрон привязан к нему очень слабо — энергия связи менее 1/10 эв. При комнат­ной температуре электрон с легкостью раздобудет такую не­большую энергию у тепловой энергии кристалла и отправится на свой страх и риск блуждать по решетке на правах свобод­ного электрона. Примесный атом наподобие мышьяка назы­вается донорным узлом, потому что он может снабдить кристалл отрицательным носителем. Если кристалл германия выращи­вается из расплава, куда было добавлено небольшое количество мышьяка, то мышьяковые донорские пункты распределятся по всему кристаллу и у кристалла появится определенная плот­ность внедренных отрицательных носителей.
    Могло бы показаться, что малейшее электрическое поле, приложенное к кристаллу, смело бы эти носители прочь. Но этого не случится, ведь каждый атом мышьяка в теле кристалла заряжен положительно. Чтобы весь кристалл оставался нейт­ральным, средняя плотность отрицательных носителей — элект­ронов — должна быть равна плотности донорных узлов. Если вы приложите к граням этого кристалла два электрода и подключите их к батарейке, пойдет ток; но если с одного конца уносятся электроны-носители, то на другой конец должны по­ступать свежие электроны проводимости, так что средняя плотность электронов проводимости остается все время пример­но равной плотности донорных узлов.
    Поскольку донорные узлы заряжены положительно, у них должно наблюдаться стремление перехватывать некоторые из электронов проводимости, когда последние блуждают по кри­сталлу. Поэтому донорный узел должен действовать как раз как та ловушка, о которой мы говорили в предыдущем пара­графе. Но если энергия захвата достаточно мала (как у мышья­ка, например), то общее число захваченных в какой-то момент носителей должно составлять лишь малую часть их общего числа. Для полного понимания поведения полупроводников этот захват, конечно, следует иметь в виду. Однако мы в даль­нейшем будем считать, что энергия захвата настолько низка, а температура так высока, что на донорных узлах нет элект­ронов. Конечно, это всего-навсего приближение.
    Можно также внедрить в кристалл германия атом примеси с валентностью 3, скажем атом алюминия. Этот атом пытается выдать себя за объект с валентностью 4, воруя добавочный элект­рон у соседей. Он может украсть электрон у одного из соседних атомов германия и оказаться в конце концов отрицательно заряженным атомом с эффективной валентностью 4. Конечно, когда он стащит у атома германия электрон, там остается дырка; и эта дырка начинает блуждать по кристаллу на правах положительного носителя. Атом примеси, который способен таким путем образовать дырку, называется акцептором от корня «акцепт» — принимать. Если кристалл германия или кристалл кремния выращен из расплава, в который была добав­лена небольшая присадка алюминия, то в кристалле окажется определенная плотность дырок, которые действуют как поло­жительные носители.
    Когда к полупроводнику добавлена донорная или акцептор­ная примесь, мы говорим о «примесном» полупроводнике.
    Когда кристалл германия с некоторым количеством внедрен­ной донорной примеси находится при комнатной температуре, то электроны проводимости поставляются как донорными узлами, так и путем рождения электронно-дырочных пар за счет тепловой энергии. Естественно, электроны от обоих источников вполне эквивалентны друг другу, и в игру статистических про­цессов, ведущих к равновесию, входит их полное число Nn. Если температура не слишком низкая, то число отрицательных носи­телей, поставляемых атомами донорной примеси, примерно равно количеству имеющихся атомов примеси. При равновесии уравнение (12.4) еще обязано соблюдаться; произведение NnNp при данной температуре есть вполне определенное число.
    Это означает, что добавление донорной примеси, которое увели­чивает число Nn, вызывает такое уменьшение количества Np положительных носителей, что NnNp не изменяется. Если кон­центрация примеси достаточно высока, то число Nn отрицатель­ных носителей определяется количеством донорных узлов и почти не зависит от температуры — все изменения в экспоненте происходят за счет Nр, даже если оно много меньше Nn. В чи­стом в других отношениях кристалле с небольшой концентра­цией донорной примеси будут преобладать отрицательные носи­тели; такой материал называется полупроводником «n-типа».
    Если в кристаллической решетке добавлена примесь акцеп­торного типа, то кое-какие из новых дырок, блуждая, начнут аннигилировать с некоторыми свободными электронами, соз­даваемыми тепловыми флуктуациями. Это будет продолжаться до тех пор, пока не выполнится уравнение (12.4). В равновес­ных условиях количество положительных носителей возрастает, а количество отрицательных убывает, поддерживая произведе­ние постоянным. Материал с избытком положительных носите­лей называется полупроводником «p-типа».
    Если к полупроводниковому кристаллу приложить пару электродов и присоединить их к источнику разницы потенциа­лов, то внутри кристалла появится электрическое поле. Оно вынудит двигаться положительные и отрицательные носители, и потечет электрический ток. Посмотрим сперва, что прои­зойдет в материале n-типа, в котором имеется подавляющее большинство отрицательных носителей. В таком материале дырками можно пренебречь; они очень слабо скажутся на токе, потому что их мало. В идеальном кристалле при конечной тем­пературе (а особенно в кристалле с примесями) электроны пере­мещаются не совсем беспрепятственно. С ними беспрерывно происходят столкновения, которые сбивают их с намеченного ими пути, т. е. меняют их импульс. Эти столкновения — те самые рассеяния, о которых мы толковали в предыдущей главе и которые происходят на неровностях кристаллической решетки. В материале re-типа главной причиной рассеяния служат те самые донорные узлы, которые поставляют носителей. Раз у электронов проводимости энергия на донорных узлах немного иная, то волны вероятности обязаны на этом месте рассеиваться. Но даже в идеально чистом кристалле бывают (при ненулевой температуре) нерегулярности решетки, вызванные тепловыми колебаниями. С классической точки зрения можно говорить, что атомы не выстроены точно в правильную решетку, а в любое мгновение немного сдвинуты со своих мест по причине тепловых колебаний. Энергия Е0, связывавшаяся по теории, изложенной в гл. 11, с каждой точкой решетки, чуть-чуть меняется от одного места к другому, так что волны амплитуды вероятности не передаются идеально, а каким-то неправильным образом рассеиваются. И при очень высоких температурах или для очень чистых веществ такое рассеяние может стать очень важным, но в большинстве примесных полупроводников, применяемых в практических устройствах, рассеяние происходит только за счет атомов примеси. Мы сейчас оценим величину электриче­ской проводимости в таких веществах.
    Если к полупроводнику n-типа приложить электрическое поле, то каждый отрицательный носитель приобретет в этом поле ускорение, набирая скорость до тех пор, пока не рассеется на одном из донорных узлов. Это означает, что носители, кото­рые обычно движутся случайным образом, имея при этом теп­ловую энергию, начнут в среднем повышать свою скорость дрей­фа вдоль линий электрического поля, вызвав ток через кристалл. Скорость дрейфа, как правило, по сравнению с типич­ными тепловыми скоростями очень мала, так что можно, прики­дывая величину тока, принять, что от столкновения к столкно­вению среднее время странствий носителя постоянно. Допустим, что эффективный электрический заряд отрицательного носителя равен qn. Сила, действующая на носитель в электрическом поле x, будет равна qnx. В гл. 43, §3 (вып. 4) мы как раз подсчиты­вали среднюю скорость дрейфа в таких условиях и нашли, что она равна Ft/m, где F сила, действующая на заряд; t — среднее время свободного пробега между столкновениями, а m— масса. Вместо нее надо поставить эффективную массу, которую мы подсчитывали в предыдущей главе, но поскольку нас интересует только грубый расчет, то предположим, что эта эффективная масса во всех направлениях одинакова. Мы ее здесь обозначим mn. В этом приближении средняя скорость дрейфа будет равна
   
    Зная скорость дрейфа, можно найти ток. Плотность электриче­ского тока j равна просто числу носителей в единице объема, Nn, умноженному на среднюю скорость дрейфа и на заряд носи­телей. Поэтому плотность тока равна
   
    Мы видим, что плотность тока пропорциональна электриче­скому полю; такие полупроводниковые материалы подчиняются закону Ома. Коэффициент пропорциональности между j и x, или проводимость s, равен
   
    Для материалов n-типа проводимость в общем не зависит от температуры. Во-первых, общее число основных носителей Nn определяется главным образом плотностью доноров в кристалле (пока температура не настолько низка, чтобы позволять атомам захватить чересчур много носителей), а, во-вторых, среднее время от соударения к соударению, tn, регулируется главным образом плотностью атомов примеси, а она, ясное дело, от тем­пературы не зависит.
    Те же рассуждения можно приложить к веществу p-типа, переменив только значения параметров, которые появляются в (12.7). Если в одно и то же время имеется сравнимое количе­ство отрицательных и положительных носителей, то вклады носителей обоего рода надо сложить. Полная проводимость определится из
   
    Для очень чистых веществ Nр и Nn примерно равны. Они будут меньше, чем у материалов с примесями, так что и прово­димость будет меньше. Кроме того, они будут резко меняться с температурой (по закону
), так что проводи­мость с температурой может меняться чрезвычайно быстро.
    § 3. Эффект Холла
    Конечно, это очень странно, что в веществе, где единствен­ными более или менее свободными объектами являются элект­роны, электрический ток вызывается дырками, которые ведут себя как положительные частицы. Мы хотим поэтому описать опыт, который довольно явно свидетельствует, что знак носи­теля электрического тока может быть положительным. Пусть имеется брусок, изготовленный из полупроводящего вещества (или из металла), и мы прикладываем к нему электрическое поле, чтобы вызвать ток в каком-то направлении, скажем в го­ризонтальном (фиг. 12.6).
   
    Фиг. 12.6. Эффект Холла возникает при действии магнитных сил на носи­тели.
    Сверху и снизу указаны знаки заряда при положительных и отрицательных (в скобках) носителях.
    Пусть мы также приложили к бруску магнитное поле под прямым углом к току, скажем, чтобы оно уходило в плоскость чертежа. Движущиеся носители будут испытывать действие магнитной силы q(vXВ). А так как средняя скорость дрейфа направлена либо направо, либо на­лево (смотря по тому, каков знак заряда носителя), то дейст­вующая на носители средняя магнитная сила будет направлена либо вверх, либо вниз. Впрочем, нет! При выбранных нами направлениях тока и магнитного поля магнитная сила, дейст­вующая на движущийся заряд, всегда будет направлена вверх. Положительные заряды, движущиеся в направлении j (направо), подвергнутся действию силы, направленной вверх. А если ток переносится отрицательными зарядами, то они будут двигаться влево (при том же знаке тока проводимости) и также испыты­вают действие силы, направленной кверху. Но после установ­ления тока никакого движения носителей вверх не будет, по­тому что ток может течь только слева направо. Вначале не­сколько зарядов могут потечь вверх, образовав вдоль верхнего края полупроводника поверхностную плотность заряда и оста­вив равную по величине и обратную по знаку поверхностную плотность заряда на нижней грани кристалла. Заряды на верх­ней и нижней поверхностях будут накапливаться до тех пор, пока электрические силы, с которыми они действуют на движу­щиеся заряды, в точности погасят (в среднем) действие магнит­ной силы, и установившийся ток пойдет по горизонтали. Заряды на верхней и нижней поверхностях создадут по вертикали попе­рек кристалла разность потенциалов, которую можно измерить высокоомным вольтметром (фиг. 12.7).
   
    Фиг. 12.7. Измерение эффекта Холла.
    Знак разности потенциа­лов, отмечаемый вольтметром, будет зависеть от знака носите­лей зарядов, ответственных за ток.
    Когда впервые ставились эти опыты, считалось, что знак разности потенциалов окажется отрицательным, как и поло­жено отрицательным электронам проводимости. Поэтому все были очень удивлены, обнаружив, что у некоторых веществ знак разности потенциалов совсем не тот. Дело выглядело так, словно носитель тока — частица с положительным знаком. Из наших рассуждений о примесных полупроводниках ясно, что полупроводник n-типа обязан вызывать знак разности потен­циалов, свойственный отрицательным носителям, а полупро­водник p-типа должен вызывать разность потенциалов противо­положного знака, поскольку ток создается положительно заря­женными дырками.
    Открытие аномального знака разности потенциалов в эффек­те Холла сначала было сделано не в полупроводнике, а в ме­талле. Считалось, что уж в металлах-то проводимостью всегда занимаются электроны, и вдруг оказалось, что у бериллия знак разности потенциалов не тот. Теперь ясно, что в металлах, как и в полупроводниках, при некоторых обстоятельствах «объектами», ответственными за проводимость, оказываются дырки. Хотя в конечном счете в кристалле движутся электроны, тем не менее соотношение между импульсом и энергией и отклик на внешнее поле в точности такие, каких следовало бы ожидать, если бы электрический ток осуществлялся положительными частицами.
    Поглядим, нельзя ли качественно оценить, какая разность потенциалов может быть получена при эффекте Холла. Если ток через вольтметр (см. фиг. 12.7) пренебрежимо мал, то заряды внутри полупроводника должны двигаться слева направо и вертикальная магнитная сила должна в точности гаситься вертикальным электрическим полем, которое мы обозначим x┴ (индекс означает «поперечный»). Чтобы это электрическое поле уничтожало магнитные силы, должно быть
   
    Припоминая связь между скоростью дрейфа и плотностью электрического тока, приведенную в (12.6), получаем
   
    Разность потенциалов между верхом и низом кристалла равна, естественно, этой самой напряженности электрического поля, умноженной на высоту кристалла. Напряженность электриче­ского поля в кристалле x┴ пропорциональна плотности тока и напряженности магнитного поля. Множитель пропорциональ­ности 1/qN называется коэффициентом Холла и обычно изобра­жается символом RH. Коэффициент Холла зависит просто от плотности носителей при условии, что носители одного знака находятся в явном большинстве. Поэтому измерение эффекта Холла дает удобный способ опытным путем определять плот­ность носителей в полупроводнике.
    § 4. Переходы между полупроводниками
    Теперь мы хотим выяснить, что получится, если взять два куска германия или кремния с неодинаковыми внутренними характеристиками, скажем с разным количеством примеси, и приложить их друг к другу, чтобы возник «переход». Начнем с того, что именуется pn-переходом, когда с одной стороны границы стоит германий p-типа, а с другой — германий n-типа (фиг. 12.8).
   
    Фиг. 12.8. pn-переход.
    Практически не очень удобно прикладывать друг к другу два разных куска германия и добиваться однородности контакта между ними на атомном уровне. Вместо этого переходы делают из одного кристалла, обработанного в разных концах по-разному. Один из приемов состоит в том, чтобы после того, как из расплава была выращена половинка кристалла, добавить в оставшийся расплав подходящую присадку. Другой способ — это нанести на поверхность немного примесного элемента и затем подогреть кристалл, чтобы часть атомов примеси продиффундировала в тело кристалла. У сделанных такими способами переходов нет резкой границы, хотя сами границы могут быть сделаны очень тонкими — до 10-4 см. Для наших рассуждений мы вообразим идеальный случай, когда эти две области кристалла с разными свойствами резко разграничены. В n-области pn-перехода имеются свободные электроны, которые могут переходить с места на место, а также фиксиро­ванные донорные узлы, которые уравновешивают полный электрический заряд. В p-области имеются свободные дырки, тоже переходящие с места на место, и равное количество отри­цательных акцепторных узлов, гасящих полный заряд. Но в дей­ствительности такое описание положения вещей годится лишь до тех пор, пока между материалами не осуществлен контакт. Как только материалы соединятся, положение на границе из­менится. Теперь, достигнув границы в материале n-типа, элект­роны не отразятся обратно, как это было бы на свободной по­верхности, а смогут прямо перейти в материал p-типа. Часть электронов из материала n-типа поэтому будет стремиться про­скользнуть в материал p-типа, где электронов меньше. Но так длиться без конца не может, потому что по мере того, как в n-области будут теряться электроны, ее заряд начнет стано­виться все более положительным, пока не возникнет электри­ческое напряжение, которое затормозит диффузию электронов в p-область. Подобным же образом положительные но­сители из материала p-типа смогут проскальзывать через переход в материал n-типа, оставляя позади себя избы­ток отрицательного заряда. В условиях равновесия пол­ный ток диффузии должен будет равняться нулю. Это произойдет благодаря возни­кновению электрических полей, которые установятся таким образом, чтобы возвращать положительные носители обратно в p-область.
    Оба описанных нами процесса диффузии продолжаются одно­временно, и оба, как видите, действуют в таком направлении, чтобы материал n-типа зарядить положительно, а материал p-типа — отрицательно. Вследствие конечной проводимости полупроводящих материалов изменение потенциала между p-областью и n-областью произойдет в сравнительно узком участке близ границы; в основной же массе каждой области потенциал будет однороден. Проведем перпендикулярно гра­нице ось х. Тогда электрический потенциал будет меняться с х так, как показано на фиг. 12.9,б.
   
    Фиг. 12,9. Электрический по­тенциал и плотности носителей в полупроводниковом переходе без смещающего напряжения.
    На фиг. 12.9,в показано ожи­даемое изменение плотности Nn n-носителей и плотности Np p-носителей. Вдали от перехода плотности носителей Np и Nn должны быть попросту равны той равновесной плотности, кото­рой положено устанавливаться в определенном бруске того же материала при той же температуре. (Фиг. 12.9 вычерчена для перехода, в котором в материале p-типа примеси больше, чем в материале n-типа.) Из-за перепада потенциала на переходе положительным носителям приходится взбираться на потен­циальный холм, чтобы попасть в p-область. Это означает, что в условиях равновесия в материале re-типа будет меньше поло­жительных носителей, чем в материале p-типа. Можно ожидать (вспомните законы статистической механики), что отношение количеств носителей p-типа в обеих областях будет даваться уравнением
   
    Произведение qpV в числителе показателя экспоненты — это как раз та энергия, которая требуется, чтобы пронести заряд qp сквозь разность потенциалов V.
    Точно такое же уравнение существует и для плотностей но­сителей n-типа:
   
    Если мы знаем равновесные плотности в каждом из двух мате­риалов, то любое из этих уравнений даст нам разность потен­циалов на переходе.
    Заметьте, что для того, чтобы (12.10) и (12.11) давали оди­наковые значения разности потенциалов V, произведение NpNn должно быть в p-области и в n-области одним и тем же.
   
   
    Фаг. 12.11. Распределение по­тенциала вдоль транзистора, если не приложено напряжение.
    (Вспомните, что qn=-qp.) Но мы еще раньше видели, что это произведение зависит только от температуры и от ширины энергетической щели кристалла. Если обе части кристалла находятся при одинаковой температуре, оба уравнения будут совместны, давая одинаковое значение разности потенциалов.
    Но раз между двумя сторонами перехода имеется разность потенциалов, то это напоминает батарейку. Если соединить re-область с p-областью проволочкой, может по ней пойдет ток? Это будет замечательно, ведь тогда ток будет идти без остановки, не истощая материала, и мы будем обладать бесконечным источ­ником энергии в нарушение второго закона термодинамики! Но если вы действительно соедините p-область с n-областью проводами, никакого тока не будет. И легко понять почему.
    Возьмем сперва проводничок из материала без примесей. Если подсоединить его к re-области, получится переход, на котором возникнет разность потенциалов. Пусть, скажем, она составит половину всей разности потенциалов между p- и n-областями. А когда мы подведем нашу чистую проволоку к p-области пере­хода, то там снова, на новом переходе, возникнет разность по­тенциалов, опять равная половине падения потенциала на pn-переходе. Во всех переходах разности потенциалов так приладятся друг к другу, что никакой ток в схеме не пойдет. И какой бы вы проволокой ни начали соединять обе стороны pn-перехода, у вас всегда выйдет два новых перехода, и до тех пор, пока температура всех переходов одинакова, скачки по­тенциалов на переходах будут компенсировать друг друга и тока не будет. Оказывается, однако (если вы рассчитаете все детали), что если у части переходов температура отличается от температуры других частей, то ток пойдет. Этот ток будет нагревать одни переходы и охлаждать другие, и тепловая энер­гия будет превращаться в электрическую. Это явление опреде­ляет собой действие термопар, применяемых для измерения температуры, и термоэлектрических генераторов. То же явле­ние используется и в небольших холодильниках.
    Но если мы не в состоянии измерять разность потенциалов между двумя сторонами pn-перехода, то откуда уверенность, что перепад потенциалов, показанный на фиг. 12.9, действитель­но существует? Ну, во-первых, можно осветить переход светом. Когда фотоны света поглощаются, они могут образовать пару электрон — дырка. В том сильном электрическом поле, кото­рое существует в переходе (равном наклону потенциальной кривой на фиг. 12.9), дырку затянет в p-область, а электрон — в n-область. Если теперь обе стороны перехода подсоединить ко внешней цепи, эти добавочные заряды вызовут ток. Энергия света перейдет в электрическую энергию перехода. Солнечные батареи, которые генерируют для спутников электрическую мощность, действуют именно на этом принципе.
    Обсуждая свойства полупроводникового перехода, мы пред­полагали, что дырки и электроны действуют более или менее независимо, если не считать того, что они как-то все же приходят в тепловое равновесие. Когда мы говорили о токе, получающемся при освещении перехода светом, то предполагали, что электрон или дырка, образующиеся в области перехода, прежде чем анни­гилировать с носителем противоположной полярности, успеют попасть в само тело кристалла. В непосредственной близости от перехода, где плотности носителей обоих знаков примерно одинаковы, аннигиляция пар электрон — дырка (называемая часто «рекомбинацией») — очень важный эффект, и его следует принимать во внимание при детальном анализе полупроводни­кового перехода.
    Мы предполагали, что дырка или электрон, образуемые в области перехода, имеют хороший шанс еще до рекомбинации попасть в основное тело кристалла. Типичное время, требую­щееся электрону или дырке для того, чтобы найти противопо­ложного партнера и аннигилировать, для типичных полупро­водниковых материалов колеблется между 10-3 и 10-7 сек. Кста­ти, это время много больше времени среднего свободного пробега t между столкновениями с узлами рассеяния в кри­сталле,— того времени, которым мы пользовались при анализе проводимости. В типичном pn-переходе время, требуемое на то, чтобы смести в тело кристалла электрон или дырку, воз­никшую в области перехода, намного меньше времени рекомби­нации. Поэтому большинство пар вливается во внешний ток.
    § 5. Выпрямление на полупроводниковом переходе
    Теперь мы покажем, как получается, что pn-переход дей­ствует как выпрямитель. Если мы к переходу приложим напря­жение одного знака, то пойдет большой ток, если другого — тока почти не будет. А если к переходу приложить переменное напряжение, то ток пойдет только в одну сторону — он «выпря­мится». Посмотрим еще раз, что получается в условиях равно­весия, описанных кривыми фиг. 12.9. В материале p-типа имеет­ся высокая концентрация Np положительных носителей. Эти носители повсюду диффундируют, и некоторое их количество каждую секунду приближается к переходу. Этот ток положи­тельных носителей, достигающих перехода, пропорционален Np. Большая часть их, однако, разворачивается обратно, не будучи в состоянии взять высокий потенциальный холм у пере­хода, и только доля
их проходит дальше. Имеется также ток положительных носителей, приближающихся к пе­реходу с другой стороны. Этот ток тоже пропорционален плот­ности положительных носителей в n-области, но здесь плотность носителей намного ниже плотности в p-области. Когда положи­тельные носители приближаются из n-области к переходу, они обнаруживают перед собой холм с отрицательным склоном и сходу соскальзывают под гору, на p-сторону перехода. Обо­значим этот ток I0. В условиях равновесия токи в обе стороны одинаковы. Значит, можно ожидать, что будет выполняться следующее соотношение:
   
    Вы замечаете, что оно на самом деле совпадает с (12.10). Мы просто вывели его другим способом.
    Допустим, однако, что мы снизили напряжение на n-стороне перехода на величину DV — это можно сделать, приложив к переходу внешнюю разность потенциалов. Теперь разница в потенциалах по обе стороны потенциального холма уже не V, а V-DV. У тока положительных носителей из p-области в n-область теперь в показателе экспоненты будет стоять именно эта разность потенциалов. Обозначая этот ток через I1; имеем
   
    Этот ток превосходит ток I0 в
раз. Значит, между I1 и I0 существует следующая связь:
   
    Ток из p-области при приложении внешнего напряжения DV растет по экспоненте. А ток положительных носителей из n-области остается постоянным, пока DV не слишком велико.
    Достигая барьера, эти носители по-прежнему будут видеть перед собой идущий под гору потенциал и будут все скатываться в p-область. (Если DV больше естественной разности потенциа­лов V, положение может измениться, но что случается при таких высоких напряжениях, мы рассматривать не будем.) В итоге ток положительных носителей I, текущий через переход, будет определяться разницей токов в обе стороны:
   
    Дырочный ток I течет в n-область. Там дырки диффундируют в самую глубь n-области и могут, вообще говоря, аннигилиро­вать на основной массе отрицательных носителей электронов. Убыль электронов, теряемых при этой аннигиляции, воспол­няется током электронов из внешнего контакта материала n-типа.
    Когда DV=0, то и ток в (12.14) равен нулю. Если DV положительна, ток с напряжением резко растет, а если DV отрицательна, знак тока меняется, но экспоненциальный член вскоре становится пренебрежимо малым, и отрицательный ток никогда не превышает I0 — величины, которая, по нашему предположению, очень мала. Этот обратный ток I0 ограничен той слабой плотностью, которой обладают неосновные носители в n-области перехода.
    Если вы проведете в точности тот же анализ для тока отри­цательных носителей, текущего через переход, сперва без внешней разности потенциалов, а после с небольшой приложен­ной извне разностью потенциалов DV, то для суммарного электронного тока вы опять получите уравнение, похожее на (12.14). Поскольку полный ток есть сумма токов носите­лей обоего рода, то (12.14) применимо и к полному току, если только отождествить I0 с максимальным током, кото­рый может течь при переме­не знака напряжения.
    Вольтамперная характеристика (12.14) показана на фиг. 12.10.
   
    Фиг. 12.10. Зависимость тока через переход от приложенного к нему напряжения.
    Она демонстрирует нам типичное поведение кристаллических диодов, подобных тем, которые применяются в современных вычислительных машинах. Нужно только заметить, что (12.14) справедливо лишь при невысоких напряжениях. При напряже­ниях, сравнимых с естественной внутренней разностью потен­циалов V (или превышающих ее), в игру входят новые явления и ток уже не подчиняется столь простому уравнению.
    Быть может, вы вспомните, что в точности такое же уравне­ние мы получили, говоря о «механическом выпрямителе» — храповике и собачке [см. гл. 46 (вып. 4)]. Мы получали те же уравнения, потому что лежащие в их основе физические про­цессы весьма схожи.
    § 6. Транзистор
    Пожалуй, самым важным применением полупроводников является изобретение транзистора. Состоит он из двух полу­проводниковых переходов, расположенных вплотную друг к другу, и работа его частично опирается на те же принципы, которые мы только что описывали, говоря о полупроводниковом диоде — выпрямляющем переходе. Предположим, что мы изго­товили из германия небольшой брусочек, составленный из трех участков: p-область, n-область и опять p-область (фиг. 12.11,а). Такое сочетание именуется pnp-транзистором. Ведут себя эти переходы в транзисторе примерно так же, как описывалось в предыдущем параграфе. В частности, в каждом переходе должен наблюдаться перепад потенциала — падение потенци­ала из n-области в каждую из p-областей. Если внутренние свой­ства обеих p-областей одинаковы, то потенциал вдоль брусочка меняется так, как показано на фиг. 12.11,б.
    Теперь представьте себе, что каждая из трех областей под­ключена к источнику внешнего напряжения (фиг. 12.12,а). Будем относить все напряжения к контакту, присоединенному к левой p-области, так что на этом контакте потенциал будет равен нулю.
   
   
    Фиг. 12.12. Распределение потенциала в работающем транзисторе.
    Этот контакт мы назовем эмиттером; n-область называется базой, или основанием, к ней подведен слабый отри­цательный потенциал; правая p-область называется коллекто­ром, к ней подведен намного больший отрицательный потенциал. В таких условиях потенциал будет меняться вдоль кристалла так, как показано на фиг. 12.12,б.
    Посмотрим сначала, что происходит с положительными носителями, потому что именно их поведение в первую очередь управляет работой pnp-транзистора. Раз потенциал эмит­тера более положителен, нежели потенциал базы, то из эмит­тера в базу пойдет ток положительных носителей. Ток этот до­вольно велик, потому что перед нами переход, работающий при «подталкивающем напряжении» (что отвечает правой половине кривой на фиг. 12.10). При таких условиях положительные но­сители, или дырки, будут «эмиттироваться» из p-области в n-область. Может показаться, что этот ток вытечет из n-области через контакт Б. Но здесь-то и таится секрет транзи­стора. Эта n-область делается очень узкой, толщиной обычно в 10-3 см, а то и уже, намного уже, чем ее поперечные размеры. Следовательно, у дырок, попавших в га-область, имеется очень большой шанс успеть продиффундировать через всю область до следующего перехода, прежде чем они аннигилируют с элект­ронами re-области. А когда они подойдут к правой границе n-области, они обнаружат перед собой крутой спуск с потен­циального холма и сходу ссыплются в правую p-область. Эта сторона кристалла называется коллектором, потому что он собирает дырки после того, как они проскользнут через n-область. В типичном транзисторе почти весь дырочный ток, вы­шедший из эмиттера и попавший на базу, собирается в области коллектора, и только жалкие остатки (доли процента) вклю­чаются в суммарный ток с электрода базы. Сумма токов из базы и коллектора, естественно, равна току через эмиттер.
    Теперь представим себе, что получится, если мы будем слегка менять потенциал Vб контакта. Поскольку мы находимся на сравнительно крутой части кривой фиг. 12.10, легкие изменения потенциала Vб довольно значительно отразятся на токе эмиттера IЭ. А напряжение на коллекторе VK намного более отрицательно, чем напряжение на электроде базы, и эти слабые изменения потенциала не скажутся заметно на крутом потенциальном холме между базой и коллектором. Большинство положительных носителей, испущенных в n-область, по-прежнему будут попадать в коллектор. Итак, изме­нениям потенциала электрода базы будут отвечать изме­нения тока через коллектор IK. Существенно, однако, что ток через базу IБ все время будет составлять лишь небольшую часть тока через коллектор. Транзистор — это усилитель; не­большой ток Iб, проходящий через электрод базы, приведет к сильному току (раз в 100 сильней, а то и больше) через коллек­торный электрод.
    А как же обстоит дело с электронами — с отрицательными носителями, которыми мы до сих пор пренебрегали? Заметьте, во-первых, что между базой и коллектором мы не ожидаем сколько-нибудь заметного тока электронов. При столь большом отрицательном напряжении на коллекторе электронам из базы пришлось бы карабкаться на очень высокий потенциальный холм, и вероятность этого очень мала. Ток электронов на кол­лектор очень слаб.
    Но, с другой стороны, электроны с базы могут переходить в область эмиттера. Можно ожидать, что электронный ток в этом направлении будет сравним с дырочным током от эмиттера к базе. Такой электронный ток пользы не приносит, даже на­оборот, потому что он увеличивает полный ток через базу, нужный для того, чтобы ток дырок к коллектору имел данную величину. Поэтому транзистор устраивается так, чтобы ток электронов к эмиттеру свести до самой малости. Электронный ток пропорционален Nn (базы)—плотности отрицательных носи­телей в веществе базы, тогда как дырочный ток от эмиттера зависит от Np (эмиттера)—плотности положительных носителей в области эмиттера. Сравнительно небольшим добавлением примеси в материал n-типа Nn (базы) может быть сделано много меньше, чем Np (эмиттера). (Кроме того, сильно помогает очень малая толщина базы, потому что выметание дырок из этой области в коллектор заметно увеличивает средний дырочный ток от эмиттера к базе, не затрагивая электронного тока.) В итоге ток электронов через переход эмиттер — база может быть сделан много слабее тока дырок, так что электроны в ра­боте pnp-транзистора заметной роли не играют. Токи в основном определяются движением дырок, и транзистор иг­рает роль усилителя.
    Можно также сделать транзистор, поменяв на фиг. 12.11 местами материалы p-типа и n-типа. Тогда получится так назы­ваемый npn-транзистор. В таком транзисторе основной ток — это ток электронов, текущий от эмиттера к базе, а от­туда — в коллектор. Разумеется, все рассуждения, которые мы проводили для pnp-транзистора, в равной мере приме­нимы и к npn-транзистору, если только переменить знаки потенциалов электродов.
   
    *Во многих книжках эта же энергетическая диаграмма истолковывает­ся иначе. Шкалу энергий относят только к электронам. Вместо того чтобы думать об энергии дырки, говорят о той энергии, которую имел бы элект­рон, если бы он заполнил дырку. Эта энергия меньше, нежели энергия сво­бодного электрона, причем как раз на ту величину, которая показана на фиг. 12.5. При такой интерпретации шкалы энергий ширина энергетиче­ской щели — это наименьшая энергия, которой нужно снабдить элект­рон, чтобы перевести его из связанного состояния в зону проводимости.
    Литература: Ч. Киттель, Введение в фи­зику твердого тела, М.—Л., 1958, гл. 13, 14, 18.

    Главa 13
    ПРИБЛИЖЕНИЕ НЕЗАВИСИМЫХ ЧАСТИЦ
    § 1. Спиновые волн
    § 2. Две спиновые волны
    § 3. Независимые частицы
    § 4. Молекула бензола
    § 5. Еще немного органической химии
    § 6. Другие приме­нения прибли­жения
    § 1. Спиновые волны
    В гл. 11 мы разработали теорию распро­странения электрона или любой другой «частицы», например атомного возбуждения, вдоль кристаллической решетки. В предыдущей главе мы эту теорию применили к полупроводникам. Но хотя электронов у нас всегда было много, мы тем не менее неизменно пренебрегали каким-либо взаимодействием между ними. Это, конеч­но, было не более чем приближение, и мы сейчас постараемся глубже разобраться в самой мысли о том, что взаимодействием между элект­ронами разрешается пренебрегать. Мы к тому же воспользуемся возможностью продемонстри­ровать новые применения теории распростране­ния частиц. Поскольку мы по-прежнему будем продолжать пренебрегать взаимодействием меж­ду частицами, то фактически в этой главе будет очень мало нового, разве что новые при­ложения. Однако первый пример, который мы хотим рассмотреть,— это пример, в котором есть возможность совершенно точно выписать правильные уравнения для случая, когда «частиц» больше чем одна. Из них мы сможем увидеть, как делается приближение пренебре­жения взаимодействием. Впрочем, мы не будем слишком тщательно анализировать эту про­блему.
    В качестве первого примера рассмотрим «спиновую волну» в ферромагнитном кристалле.
    Теории ферромагнетизма мы касались в гл.36 (вып. 7). При нулевой температуре все спины электронов, которые дают вклад в магнетизм всего ферромагнитного кристалла, параллельны между собой. Между спинами существует энер­гия взаимодействия, которая ниже всего тогда, когда все спины направлены вниз. Но при ненулевой темпера­туре имеется какая-то вероятность того, что часть спинов перевернется. Эту вероятность тогда мы приближенно под­считывали. На этот раз мы разовьем квантовомеханическую теорию явления, чтобы знать, что делать, если нужно будет решить задачу точнее. Но мы все еще будем прибегать к идеали­зации; будем считать, что электроны расположены вблизи ато­мов, а спины взаимодействуют только со своими соседями.
    Рассмотрим такую модель: пусть в каждом атоме все элект­роны, кроме одного, спарены, и весь магнитный эффект обязан тому, что в каждом атоме остается один неспаренный электрон со спином 1/2. Вообразим еще, что эти электроны расположены в тех самых узлах решетки, где находятся атомы. Модель в об­щих чертах отвечает металлическому никелю.
    Кроме того, допустим, что любая пара вращающихся со­седей-электронов взаимодействует друг с другом и что каж­дое такое взаимодействие добавляет в энергию системы по сла­гаемому;
   
    Здесь s представляют собой спины, а суммирование идет по всем парам соседей-электронов. Мы уже говорили о по­добной энергии взаимодействия, рассматривая сверхтонкое расщепление водорода, вызываемое взаимодействием магнитных моментов электрона и протона в атоме водорода. Тогда мы выра­жали это в виде Аsе·sр. На этот раз для данной пары, скажем для электронов из атома № 4 и из атома № 5, гамильтониан имеет вид —Ks4·s5. Каждая такая пара дает по одному слагае­мому, а весь гамильтониан (как это бывает и с классическими энергиями) есть сумма таких слагаемых для каждой взаимо­действующей пары. Энергия написана с множителем —К, так что положительное К отвечает ферромагнетизму, т. е. тому слу­чаю, когда наинизшая энергия получается при параллельности соседних спинов. В реальном кристалле могут появиться и другие слагаемые — взаимодействие с соседом через одного и т. д., но на нашем уровне такие усложнения нам не пона­добятся.
    Располагая гамильтонианом (13.1), мы обладаем и полным описанием ферромагнетика (в рамках нашего приближения), так что из него должны получиться все магнитные свойства. Кроме того, из него же должны получаться и термодинамические свойства при намагничивании. Если мы сможем определить все уровни энергии, то можно будет найти и свойства кристалла при температуре Т, основываясь на том, что для системы вероят­ность оказаться в данном состоянии с энергией Е пропорцио­нальна
. Эта задача никогда не была решена до конца.
    Некоторые задачи мы сможем разобрать на простом примере, когда все атомы лежат на одной прямой — случай одномерной решетки. Все эти представления вы потом легко сможете распро­странить на трехмерную решетку. Возле каждого атома имеется электрон; у него есть два возможных состояния — либо спином вверх, либо вниз, и вся система описывается перечислением на­правлений спинов. В качестве гамильтониана системы возьмем оператор энергии взаимодействия. Интерпретируя спиновые векторы (13.1) как сигма-операторы, или сигма-матрицы, мы напишем для линейной решетки
   
    В этом уравнении для удобства написан множитель А/2 (так что некоторые из дальнейших уравнений в точности совпадут с уравнениями из гл. 11).
    Каково же наинизшее состояние системы? Состояние наинизшей энергии это то состояние, когда все спины параллельны, скажем все глядят вверх. Это состояние можно обозначить ! ... + + + + ...>, или|осн.), чтобы подчеркнуть, что оно «ос­новное», наинизшее. Энергию этого состояния легко себе пред­ставить. Можно, например, расписать все сигма-векторы через s^х, s^у и s^г, аккуратно подсчитать, каков вклад каждого из них в энергию основного состояния, и все затем сложить. Путь, однако, можно сильно сократить. В гл. 10, § 2 (вып. 8) мы ви­дели, что s^i·s^j может быть выражено через спин-обменный опе­ратор Паули:
   
    где оператор р^ijспин-°бм обменивает спины i-го и j-го электронов. После этой подстановки гамильтониан обращается в
   
    Теперь уже легко подсчитать, что происходит в различных со­стояниях. Например, если и i и j смотрят вверх, то обмен спи­нами ничего не меняет, так что P^ij, действуя на состояние, опять приводят к тому же состоянию, т. е. оно равнозначно умножению на +1. Выражение Р^ij -1/2 просто равно 1/2. (В дальнейшем слова «спин-обм» над Р мы писать не будем.)
    В основном состоянии все спины направлены вверх; значит, обмен любой парой спинов приводит опять к исходному состоя­нию. Основное состояние является стационарным. Если подейст­вовать на него гамильтонианом, получится опять то же состоя­ние, умноженное на сумму чисел —(А/2), по одному на каждую пару спинов. Иначе говоря, энергия системы в основном состоя­нии составляет по —А/2 на атом.
    Теперь подсчитаем энергии некоторых возбужденных состоя­ний. Удобно будет отсчитывать энергии от основного состояния, т. е. в качестве нулевой энергии выбрать энергию основного состояния. Этого можно добиться, добавив к каждому слагаемо­му в гамильтониане по энергии А/2. Тогда 1/2 в (13.4) просто заменится единицей. Наш новый гамильтониан будет равен
   
    При таком гамильтониане энергия низшего состояния равна нулю; спин-обменный оператор равнозначен умножению на единицу (для основного состояния), что сокращается с единицей в каждом слагаемом.
    Для описания состояний, отличных от основного, нам пона­добится своя совокупность базисных состояний. Удобно подойти к делу так: сгруппировать состояния в соответствии с тем, у скольких электронов спин направлен вниз: у одного ли, у двух и т. д. Конечно, состояний, когда один спин направлен вниз, очень много: он может быть опрокинут, скажем, у атома № 4 или у № 5, или у № 6... И можно, конечно, в качестве базисных состояний выбрать именно такие состояния, обозначив их |4>, |5>, | 6>, ... Однако для дальнейшего удобнее, если мы будем отмечать «из ряда вон выходящий атом» (тот, у которого спин направлен вниз) его координатой х. Иначе говоря, мы опре­делим состояние | х5> как такое, в котором все электроны вра­щаются спинами вверх, и один только (тот, что возле атома в точке х5) вращается спином вниз (фиг. 13.1).
   
    Фиг. 13.1. Базисное состояние |x5> системы спинов, расположенных по одной линии.
    Все спины направлены вверх, а тот, что в х5, перевернут.
    Вообще, |хn> будет обозначать состояние с одним перевернутым спином, рас­положенным в координате хn n-го атома.
    Как же действует гамильтониан (13.5) на состояние |x5>? Один из членов гамильтониана это, скажем, — А (Р^7,8-1). Оператор P^7,8 обменивает спинами два соседних атома № 7 и № 8. Но в состоянии |x5> они оба направлены вверх, так что ничего не меняется; Р^7,8 равнозначно умножению на единицу:
   
    Отсюда следует
   
    Стало быть, все члены гамильтониана, кроме тех, куда вхо­дит атом № 5, дадут нуль. Операция P^4,5, действуя на со­стояние |x5>, обменивает спинами атом № 4 (со спином вверх) и атом № 5 (со спином вниз). В результате появляется со­стояние, в котором все спины смотрят вверх, кроме атома в точке 4. Иначе говоря,
   
    Точно так же
   
    Значит, изо всего гамильтониана выживут только члены
   
    Действуя на |x5>, они дадут соответственно
   
    В итоге
   
    Когда гамильтониан действует на состояние |x5>, то возни­кает некоторая амплитуда оказаться в состояниях | x4> и |х6>. Это просто означает, что существует определенная амплитуда того, что направленный книзу спин перепрыгнет к соседнему атому. Значит, из-за взаимодействия между спинами, если вна­чале один спин был направлен вниз, имеется некоторая ве­роятность того, что позднее вместо него вниз будет смотреть другой. При действии на состояние | хn> гамильтониан дает
   
    Заметьте, в частности, что если взять полную систему состоя­ний только с одним спином-«перевертышем», то они будут перемешиваться только между собой. Гамильтониан никогда не перемешает эти состояния с другими, в которых спинов-«перевертышей» больше. Пока вы только обмениваетесь спинами, вы никогда не сможете изменить общего количества перевертышей. Удобно будет использовать для гамильтониана матричное обозначение, скажем,
    уравнение (13.7) эквивалентно следующему:
   
    Каковы же теперь уровни энергии для состояний с одним перевернутым спином? Пусть, как обычно, Сn — амплитуда того, что некоторое состояние |y> находится в состоянии |xn>. Если мы хотим, чтобы |y> было состоянием с определенной энергией, то все Сn обязаны одинаково меняться со временем, а именно по правилу
   
    Подставим это пробное решение в наше обычное уравнение Гамильтона
   
    используя в качестве матричных элементов (13.8). Мы, конечно, получим бесконечное количество уравнений, но все их можно будет записать в виде
   
    Перед нами опять в точности та же задача, что и в гл. 11, только там, где раньше стояло Е0, теперь стоит 2А. Решения отвечают амплитудам Сn (амплитудам с перевернутым спином), которые распространяются вдоль решетки с константой распростране­ния k и энергией
    Е=2A(1-coskb), (13.12)
    где b — постоянная решетки.
    Решения с определенной энергией отвечают «волнам» перево­рота спина, называемым «спиновыми волнами». И для каждой длины волны имеется соответствующая энергия. Для больших длин волн (малых k) эта энергия меняется по закону
    Е=Аb2k2. (13.13)
    Как и прежде, мы можем теперь взять локализованный волно­вой пакет (содержащий, однако, только длинные волны), кото­рый соответствует тому, что электрон-«перевертыш» окажется в такой-то части решетки. Этот перевернутый спин будет вести себя как «частица». Так как ее энергия связана с k формулой (13.13), то эффективная масса «частицы» будет равна
   
    Такие «частицы» иногда именуют «магнонами».
    § 2. Две спиновые волны
    Теперь мы хотели бы выяснить, что происходит, когда име­ется пара перевернутых спинов. Опять начнем с выбора системы базисных состояний. Выберем такие состояния, когда спины перевернуты в каких-то двух местах (так, как на фиг. 13.2).
   
    Фиг. 13.2. Состояния с двумя переверну­тыми спинами.
    Эти состояния можно, скажем, отмечать x-координатами тех двух узлов решетки, в которых оказались электроны с пе­ревернутым спином. То, что на рисунке, можно обозначить |х2, х5>. В общем случае базисные состояния будут |хn, хm> — дважды бесконечная совокупность! При таком способе описания состояние | x4, х9> и состояние | х9, x4> совпадают, потому что каждое из них просто говорит, что в точках 4 и 9 спин перевер­нут; порядок их не имеет значения. Не имеет также смысла состояние | x4, х4>такого просто быть не может. Любое со­стояние |y> мы можем описать, задав амплитуды того, что оно обнаружится в одном из базисных состояний.
    Итак, Сm,n=<хmn|y> теперь означает амплитуду того, что система в состоянии |y> окажется в состоянии, когда у электронов, стоящих вблизи m-го и n-го атомов, спины смотрят вниз. Сложности, которые теперь возникнут, будут связаны не с усложнением идей,— это будут просто усложнения в бухгалтерии. (Одна из сложностей квантовой механики как раз и состоит в громоздкости бухгалтерии. Чем больше спинов перевернется, тем сложнее станут обозначения, тем больше будет индексов, тем страшнее будут выглядеть уравнения; но сами идеи вовсе не обязательно должны усложниться.)
    Уравнения движения спиновой системы — это дифферен­циальные уравнения для Сn,m:
   
    Пусть нам опять нужно найти стационарные состояния. Как обычно, производные по времени обратятся в Е, умноженное на амплитуду, a Cm,n, заменятся коэффициентами аm,n. Затем надо аккуратно рассчитать влияние Н на состояние с перевернутыми спинами т и п. Это сделать нетрудно. Представьте на минуту, что т далеко от n, так что не нужно думать, что будет, если ... и т. д. Обменная операция, производимая в точке хn, передвинет перевернутый спин либо к (n+1)-му, либо к (n-1)-му атому, так что имеется ненулевая амплитуда того, что теперешнее состояние получилось из состояния m, хn+1>, и амплитуда того, что оно произошло из состояния m, хn-1>. Но передви­нуться мог и второй спин, так что не исключена и какая-то амплитуда того, что Сm,n питается от Сm+1,n или от Сm-1,n. Все эти эффекты должны быть одинаковы. Окончательный вид гамильтонова уравнения для Сm.n таков:
   
    Это уравнение пригодно всегда, за исключением двух слу­чаев. При m=n уравнения вообще нет, а при m=n±1 пара членов в (13.16) должна пропасть. Этими исключениями мы пренебрежем. Мы просто будем игнорировать тот факт, что не­которые из этих уравнений слегка меняются. Ведь как-никак кристалл считается бесконечным и слагаемых в гамильтониане бесчисленно много; пренебрежение некоторым их числом вряд ли сильно на чем-то скажется. Итак, в первом грубом прибли­жении давайте позабудем об изменениях уравнений. Иными сло­вами, допустим, что (13.16) верно при всех m и n, даже когда m и n стоят по соседству. Это самое существенное в нашем прибли­жении.
    Теперь уже решение отыскать нетрудно. Мы немедленно по­лучаем
   
    где
   
    а
   
    Поразмыслим минутку о том, что было бы, если бы у нас были две независимые, отдельные спиновые волны (как в пре­дыдущем параграфе), соответствующие k=k1 и k=k2; их энер­гии из (13.12) имели бы вид
   
    и
   
    Заметьте, что энергия Е в (13.19) является как раз их суммой:
   
    Иными словами, наше решение можно толковать следующим образом. Имеются две частицы, т. е. пара спиновых волн, одна из которых обладает импульсом, описываемым числом k1 a другая — числом k2; энергия системы равна сумме энергий этих двух объектов. Обе частицы действуют совершенно независи­мо. Вот и все, что в этом есть — и ничего больше.
    Конечно, мы сделали некоторые приближения, но в данный момент мы не будем обсуждать точность нашего ответа. Вы, однако, чувствуете, что в кристаллах разумного размера с миллиардами атомов и, стало быть, с миллиардами слагаемых в гамильтониане большой ошибки от пренебрежения немногими слагаемыми не выйдет. Если бы, конечно, перевернутых спинов стало так много, что их плотность была бы заметной, то при­шлось бы позаботиться и о поправках.
    (Интересно, что в случае, когда перевернутых спинов только два, можно написать и точное решение. Но результат особой важности не представляет. Просто интересно, что в этом случае уравнения можно решить точно. Решение таково:
   
    с энергией
   
    и с волновыми числами kc и k, связанными с k1 и k2 формулами
    k1= kc-k, k2=kc+k. (13.22)
    В этом решении отражено и «взаимодействие» пары спинов. Оно описывает тот факт, что когда спины сближаются, возникает какая-то вероятность их рассеяния. Поведение спинов очень по­хоже на взаимодействие частиц. Но подробная теория их рас­сеяния выходит за пределы того, о чем мы здесь собрались го­ворить.)
    § 3. Независимые частицы
    В предыдущем параграфе мы написали гамильтониан (13.15) для двухчастичной системы. Затем, пользуясь приближением, эквивалентным пренебрежению каким-либо «взаимодействием» между двумя частицами, мы нашли стационарные состояния, описываемые формулами (13.17) и (13.18). Это состояние по­просту есть произведение двух одночастичных состояний. Но решение, которое мы написали для аm,n [формула (13.18)], на самом деле удовлетворить нас не может. Мы с самого начала подчеркивали, что состояние | х9, x4> не отличается от состоя­ния |x4, x9), что порядок хm и хn неважен. Вообще говоря, алгеб­раическое выражение для амплитуды Сm,n не должно меняться от перестановки значений хm и хn, потому что она не изменяет состояния. В любом случае она будет представлять амплитуду того, что спин, направленный вниз, обнаружится в хm и в хn.
    Но обратите внимание, что (13.18) несимметрично по хm и хn, поскольку k1 и k2, вообще говоря, различны.
    Все дело в том, что мы не заставили наше решение (13.15) подчиниться этому добавочному условию. К счастью, пока не­трудно все исправить. Заметьте, во-первых, что ничуть не хуже формулы (13.18) другое решение уравнения Гамильтона:
   
    И даже энергия здесь та же самая, что была в (13.18). Значит, любая линейная комбинация (13.18) и (13.23) также будет ре­шением системы и будет обладать по-прежнему энергией, давае­мой (13.19). Решение, которое нужно выбрать по требованиям симметрии,—просто сумма (13.18) и (13.23):
   
    Теперь при данных k1 и k2 амплитуда Сm,n не зависит от того, в каком порядке мы берем хm и хn; если мы случайно поставим хm и хn в обратном порядке, мы получим ту же амплитуду. И на­ше толкование уравнения (13.24) на языке «магнонов» тоже ста­нет иным. Уже нельзя говорить, что уравнение представляет одну частицу с волновым числом k1 и другую частицу с волновым числом k2. Амплитуда (13.24) представляет одно состояние с двумя частицами (магнонами). Состояние характеризуется дву­мя волновыми числами k1 и k2. Наше решение выглядит как со­ставное состояние одной частицы с импульсом р1= k1/h и дру­гой частицы с импульсом р2=k2/h, но в этом состоянии нельзя сказать, где какая частица.
    В этот момент полезно вспомнить гл. 2 (вып. 8) и наш рас­сказ о тождественных частицах. Мы просто только что показали, что частицы спиновых волн (магноны) ведут себя как тождест­венные бозе-частицы. Все амплитуды обязаны быть симметрич­ны по координатам двух частиц; это все равно, что сказать, что после «обмена двумя частицами» мы снова получим ту же амплитуду с тем же знаком. Но вы можете подумать: «Почему же мы все-таки решили в (13.24) сложить два члена? Почему не вычесть?» Ведь при знаке минус обмен хm и хn просто изменил бы знак аm,n, а это не в счет, это не имеет значения. Но ведь об­мен хm с хn ничего не меняет — все электроны кристалла оста­нутся там же, где и были, так что даже для перемены знака нет, казалось бы, никакого повода. Но это, конечно, плохой ар­гумент.
    Наше обсуждение имело двойную цель: во-первых, расска­зать вам кое-что о спиновых волнах; во-вторых, продемонстри­ровать состояние, амплитуда которого равна произведению двух амплитуд, а энергия равна сумме энергий, отвечающих этим амплитудам. Для независимых частиц амплитуда получается умножением, а энергия — сложением. Почему сложением — легко понять. Энергия — это коэффициент при t в мнимом пока­зателе экспоненты; она пропорциональна частоте. Если пара объектов что-то совершает, один с амплитудой
, а другой . с амплитудой
, и если амплитуда того, что обе эти вещи произойдут вместе, является произведением отдельных ампли­туд, то в произведении появится единственная частота, равная сумме двух частот. Энергия, отвечающая произведению ампли­туд, есть сумма обеих энергий.
    Нам понадобилось довольно долго говорить, чтобы сообщить очень простую вещь: когда вы не учитываете взаимодействия между частицами, вы вправе рассматривать каждую частицу независимо. Они могут отдельно существовать во всевозможных состояниях, в которых они пребывали бы и порознь, и давать тот же вклад в энергию, какой давали бы порознь. Однако сле­дует помнить, что если частицы тождественны, то они могут вести себя как бозе- или ферми-частицы в зависимости от за­дачи. Например, пара электронов, добавленная к кристаллу, ведет себя как ферми-частицы. Обмен местоположениями двух электронов приводит к перемене знака амплитуды. В уравне­нии, соответствующем (13.24), между двумя слагаемыми стоит знак минус. Как следствие этого: две ферми-частицы не могут пребывать в точности в одних и тех же условиях — с одинако­выми спинами и одинаковыми k. Амплитуда такого состояния нуль.
    § 4. Молекула бензола
    Хотя квантовая механика снабжает нас основными закона­ми, определяющими строение молекул, эти законы, однако, удается точно применить лишь к самым простым соединениям. Поэтому химики разработали различные приближенные спосо­бы расчета некоторых из свойств сложных молекул. Мы хотим здесь рассказать, как химики-органики применяют приближе­ние независимых частиц. Начнем с молекулы бензола. Мы ее рассматривали с другой точки зрения в гл. 8 (вып. 8). Тогда мы воспользовались приближенным представлением молекулы в виде системы с двумя состояниями, базисные состояния которой показаны на фиг. 13.3. Имеется кольцо из шести углеродов, к каждому из которых приделано по водороду. По принятой схеме валентных связей необходимо допустить, что между поло­виной атомов углерода имеются двойные связи и что в низших энергетических условиях воз­никают две возможности, по­казанные на рисунке. Но, кроме этого, имеются и еще другие, более высокоэнерге­тические состояния. Когда мы в гл. 8 говорили о моле­куле бензола, мы пользова­лись только двумя состоя­ниями, а прочие забыли. И мы обнаружили, что энергия основного состояния молекулы не совпадала с энергией ни одного из нарисованных состояний; нет, она была ниже на величину, пропорциональную амплитуде переброса из одного такого состояния в другое.
    А теперь мы хотим взглянуть на ту же молекулу с совершен­но иной точки зрения, применяя приближение другого рода. Обе точки зрения приведут нас к разным ответам, но когда мы усовершенствуем оба приближения, то придем к истине — к правильному описанию бензола.
    Однако если не позаботиться об этих усовершенствованиях (что обычно и делают), то не нужно удивляться, что эти описа­ния не сойдутся. Мы по крайней мере покажем, что при новой точке зрения низшая энергия молекулы бензола оказывается ниже, чем у любой из структур с тремя двойными связями (см. фиг. 13.3).
   
    Фиг. 13.3. Два базисных состоя­ния молекулы бензола, исполь­зовавшиеся в гл. 8.

    Рассмотрим следующую картину. Представим себе шесть ато­мов водорода, связанных только одиночными связями (фиг. 13.4).
   
    Фиг. 13.4. Бензольное кольцо, из которого убрали шесть электронов.
    Мы убрали шесть электронов (поскольку каждая связь обоз­начает пару электронов), так что перед нами шестикратно ионизованная молекула бензола. Теперь посмотрим, что слу­чится, когда мы поодиночке вернем в молекулу всю шестерку электронов, считая, что каждый из них может свободно двигать­ся вокруг кольца. Допустим также, что все связи, показанные на фиг. 13.4, заполнены и не нуждаются в дальнейшем рассмотре­нии. Что происходит, когда мы возвращаем молекулярному иону его электрон? Он, конечно, может расположиться в любом из шести мест на кольце, соответствующих шести базисным со­стояниям. И у него будет некоторая амплитуда (скажем А) того, что он перейдет с одного места на другое. При анализе стационарных состояний обнаружатся несколько возможных уровней энергии. Это только при одном электроне.
    Добавим еще один электрон. И сделаем теперь самое стран­ное предположение: то, что делает один электрон, не сказывается на том, что делает другой. На самом деле они, конечно, будут взаимодействовать; они отталкивают друг друга с помо­щью кулоновых сил, и, кроме того, их энергия, когда они по­падают в одно место, должна заметно отличаться от удвоенной энергии, когда они туда попадают поодиночке. Конечно, приб­лижение независимых частиц незаконно, когда мест только шесть, особенно когда в них хотят поместить шестерку электро­нов. Но, несмотря на это, химики-органики сумели многому научиться, делая именно такое приближение.
    Прежде чем подробно рассчитывать молекулу бензола, возь­мем пример попроще — молекулу этилена. В нее входят только два атома углерода и по паре атомов водорода с каждой сторо­ны (фиг. 13.5).
   
    Фиг. 13.5. Молекула этилена.
    У молекулы есть одна «лишняя» связь между двумя атомами углерода, в которую входят два электрона. Уберем один из этих электронов; что мы получим? То, что оста­нется, можно будет рассматривать как систему с двумя состоя­ниями: оставшийся электрон может находиться либо возле од­ного атома, либо возле другого. И, как у всякой системы с двумя состояниями, допустимые энергии отдельного электрона могут быть равны либо Е0-А, либо Е0(фиг. 13.6).
   
    Фиг. 13.6. Возможные уровни энергии «лиш­них» электронов в молекуле этилена.
    Добавим теперь второй электрон. Все очень хорошо: электро­нов у нас два — первый можно поставить в нижнее состояние, а второй в верхнее, не так ли? Не совсем,— мы о чем-то забыли. Ведь каждое из со­стояний на самом деле двойное. Когда мы говорим, что допустимо состояние с энер­гией Е0-А, то в действительности там их пара. В одно и тоже состояние могут по­пасть два электрона, один со спином, направленным вверх, другой — вниз (но не больше, из-за прин­ципа запрета). Так что на самом деле имеются два возможных состояния с энергией Е0-А. Можно начертить диаграмму (фиг. 13.7), которая показывает и уровни энергии, и их насе­ленность.
   
    Фиг. 13.7. В добавочной связи молекулы этилена два электрона (один со спином вверх, другой — вниз) могут занять низший уровень энергии.
    В состоянии наименьшей энергии оба электрона будут в наинизшем состоянии с противоположными спинами. Энергия «лишней» связи в молекуле этилена поэтому равна 20-А), если пренебречь взаимодействием между двумя электронами. Теперь вернемся к бензолу. У каждого из двух состояний на фиг. 13.3 есть три двойные связи. И каждая из них очень похожа на связь в этилене и дает вклад в энергию 20-А), где теперь Е0уже энергия, необходимая, чтобы поместить электрон в бензоле на нужное место, а А — амплитуда пере­броса его в соседнее место. Значит, энергия должна быть равна примерно 60-А). Но когда мы раньше изучали бензол, то пришли к выводу, что его энергия ниже энергии структуры с тремя двойными связями. Посмотрим, получится ли теперь, с нашей новой точки зрения, энергия бензола ниже, чем у трех двойных связей.
    Начинаем с шестикратно ионизо­ванного бензольного кольца. Добавляем один электрон. Теперь у нас система с шестью состояниями. Мы пока еще не решали таких систем, но знаем, что нужно делать. Можно написать шесть уравнений для шести амплитуд и т. д. Но не лучше ли сберечь свои силы, ведь мы уже ре­шили эту задачу, исследуя электрон в бесконечной цепочке атомов. Конечно, бензол — не бесконечная цепочка, шесть мест для атомов в нем расположены по кругу. Но представьте, что мы разняли кольцо в цепь и пронумеровали атомы вдоль цепи числами от 1 до 6. В бесконечной линии следующее место имело бы номер 7, но если мы условимся, что оно совпадает с местом номер 1 и т. д., то все окажется в точности похожим на бензольное кольцо. Иными словами, мы можем взять реше­ние для бесконечной линии с добавочным требованием, чтобы решение было периодичным с периодом длиной в шесть атомов. Согласно гл. 11, электрон на прямой обладает состояниями определенной энергии, когда амплитуда того, что он окажется в некотором месте хn, равна
. При каждом k энер­гия равна
    E=E0-2Acoskb. (13.25)
    Теперь из этих решений нам нужно оставить только такие, которые через каждые 6 атомов повторяются. Разберем сперва общий случай, когда в кольце N атомов. Если решение должно иметь период в N атомных расстояний, то eikbN должна быть равна единице, или kbN должна быть кратна 2p. Если s — любое це­лое число, то наше условие имеет вид
    kbN=2ps. (13.26)
    Мы раньше видели, что нет смысла брать k вне пределов ±p/b. Это означает, что мы получим все мыслимые состояния, беря значения s в пределах ±N/2.
    Стало быть, мы приходим к тому, что у N-атомного кольца имеется N состояний определенной энергии и их волновые числа ks даются числами
    ks=2ps/Nb. (13.27)
    Каждое состояние имеет энергию (13.25). Получается линейча­тый спектр возможных уровней энергий. Спектр для бензола (N=6) показан на фиг. 13.8, б. (Числа в скобках указывают число различных состояний с одинаковой энергией.)
    Есть наглядный способ изобразить эти шесть уровней энер­гии. Он показан на фиг. 13.8, а. Вообразим круг с центром на одном уровне с Е0 и с радиусом 2А. Если мы отложим, начиная снизу, шесть равных дуг (под углами, считая от нижней точки, ksb = 2ps/N, или 2ps/6 для бензола), то высоты точек круга будут решениями (13.25). Шесть точек представляют шесть возможных состояний. Низший уровень энергии придется на Е0-; дальше идут два состояния с одинаковой энергией Е0-А и т. д. Это возможные состояния одного электрона. Если электронов не один, а больше, то в каждое состояние может попасть по два электрона с противоположными спинами.
    У молекулы бензола надо здесь разместить шесть электро­нов. Если состояние основное, то они должны попасть в наи­низшие возможные энергетические состояния — пара в s=0, пара в s=+1 и пара в s =-1. Согласно приближению неза­висимых частиц, энергия основного состояния равна
   
    Она действительно оказывается меньше, чем у трех отдельных двойных связей,— на 2А.
    Сравнив энергию бензола с энергией этилена, можно опреде­лить А. Эта величина оказывается равной 0,8 эв, или в едини­цах, которые нравятся химикам, 18 ккал/моль.
    Этим описанием можно воспользоваться, чтобы вычислить или понять другие свойства бензола. Например, глядя на фиг. 13.8, можно разобраться в возбуждении бензола светом.
   
   
    Фиг. 13.8. Уровни энергии в кольце, в котором для электрона приготовлены шесть свободных мест (на­пример, в бензольном).
    Что бы произошло, если бы мы попытались возбудить один из электронов? Он мог бы передвинуться к одному из незанятых высших состояний. Наинизшей энергией возбуждения оказался бы переход от наивысшего заполненного уровня к наинизшему пустому. Эта энергия равна 2A. Бензол будет поглощать свет с частотой v=2A/h. Кроме того, будет наблюдаться также по­глощение фотонов с энергиями ЗА и 4A. Нечего и говорить, что спектр поглощения бензола был измерен, и картина спектраль­ных линий оказалась более или менее правильной, если не счи­тать того, что наинизшие переходы наблюдаются в ультрафио­лете; и чтобы удовлетворить всем данным, пришлось бы взять величину А около 1,4—2,4 эв. Иначе говоря, численное значе­ние А вдвое-втрое выше, чем предсказывается энергией хими­ческой связи.
    Как же поступает химик в таких случаях? Он анализирует множество молекул сходного типа и выводит какие-то эмпири­ческие правила. Он учит, например: для расчета энергии связи берите вот такое-то и такое-то значение А, а для получения при­ближенно верного спектра поглощения возьмите другое значе­ние A. Вам может показаться, что это звучит слегка абсурдно. И впрямь, в ушах физика, который пытается объяснить всю при­роду из первоначальных принципов, это звучит довольно дико. Но перед химиком задача другая. Он обязан заранее догадаться, что произойдет с молекулами, которых до сих пор не было или которые до конца не поняты. Ему нужен ряд эмпирических пра­вил и ему совершенно все равно, откуда они возьмутся. Так что теорией он пользуется совсем не так, как физик. Он берет урав­нения, в которых отразился свет истины, а потом вынужден менять в них константы, делая эмпирические поправки.
    В случае бензола основная причина несогласия лежит в нашем предположении, что электроны независимы; теория, из которой мы исходили, на самом деле незаконна. Тем не менее на нее падает какой-то отблеск истины, потому что результаты, по-видимому, идут в правильном направлении. При помощи таких уравнений плюс некоторые эмпирические правила (со множеством исключений) химик-органик прокладывает свой путь через чащу тех сложнейших вещей, которые он решился изучать. (Не забывайте, что в действительности причина, по которой физику удается выводить что-то из основных принципов, состоит в том, что он выбирает только простые задачи. Он ни­когда не решает задач с 42 или даже с 6 электронами. До сих пор он смог рассчитать с приличной точностью только атом водо­рода да атом гелия.)
    § 5. Еще немного органической химии
    Можно ли применить все эти идеи для изучения других молекул? Рассмотрим такую молекулу, как бутадиен (1,3); она показана на фиг. 13.9 с помощью обычной картины валентных связей.